| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fniniseg |  |-  ( F Fn A -> ( X e. ( `' F " { ( F ` x ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` x ) ) ) ) | 
						
							| 3 |  | fniniseg |  |-  ( F Fn A -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) ) ) | 
						
							| 4 |  | eqeq2 |  |-  ( ( F ` x ) = ( F ` X ) -> ( ( F ` Y ) = ( F ` x ) <-> ( F ` Y ) = ( F ` X ) ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( ( F ` x ) = ( F ` X ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) | 
						
							| 6 | 5 | eqcoms |  |-  ( ( F ` X ) = ( F ` x ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) | 
						
							| 7 | 3 6 | sylan9bb |  |-  ( ( F Fn A /\ ( F ` X ) = ( F ` x ) ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) | 
						
							| 8 | 7 | ex |  |-  ( F Fn A -> ( ( F ` X ) = ( F ` x ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) | 
						
							| 9 | 8 | adantld |  |-  ( F Fn A -> ( ( X e. A /\ ( F ` X ) = ( F ` x ) ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) | 
						
							| 10 | 2 9 | sylbid |  |-  ( F Fn A -> ( X e. ( `' F " { ( F ` x ) } ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) | 
						
							| 11 |  | eleq2 |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( X e. S <-> X e. ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 12 |  | eleq2 |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( Y e. S <-> Y e. ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 13 | 12 | bibi1d |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) <-> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) | 
						
							| 14 | 11 13 | imbi12d |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) <-> ( X e. ( `' F " { ( F ` x ) } ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) | 
						
							| 15 | 10 14 | imbitrrid |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) | 
						
							| 16 | 15 | rexlimivw |  |-  ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) | 
						
							| 17 | 1 | elsetpreimafv |  |-  ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 18 | 16 17 | syl11 |  |-  ( F Fn A -> ( S e. P -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) | 
						
							| 19 | 18 | 3imp |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |