Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fniniseg |
|- ( F Fn A -> ( X e. ( `' F " { ( F ` x ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` x ) ) ) ) |
3 |
|
fniniseg |
|- ( F Fn A -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) ) ) |
4 |
|
eqeq2 |
|- ( ( F ` x ) = ( F ` X ) -> ( ( F ` Y ) = ( F ` x ) <-> ( F ` Y ) = ( F ` X ) ) ) |
5 |
4
|
anbi2d |
|- ( ( F ` x ) = ( F ` X ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |
6 |
5
|
eqcoms |
|- ( ( F ` X ) = ( F ` x ) -> ( ( Y e. A /\ ( F ` Y ) = ( F ` x ) ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |
7 |
3 6
|
sylan9bb |
|- ( ( F Fn A /\ ( F ` X ) = ( F ` x ) ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |
8 |
7
|
ex |
|- ( F Fn A -> ( ( F ` X ) = ( F ` x ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) |
9 |
8
|
adantld |
|- ( F Fn A -> ( ( X e. A /\ ( F ` X ) = ( F ` x ) ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) |
10 |
2 9
|
sylbid |
|- ( F Fn A -> ( X e. ( `' F " { ( F ` x ) } ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) |
11 |
|
eleq2 |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( X e. S <-> X e. ( `' F " { ( F ` x ) } ) ) ) |
12 |
|
eleq2 |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( Y e. S <-> Y e. ( `' F " { ( F ` x ) } ) ) ) |
13 |
12
|
bibi1d |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) <-> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) |
14 |
11 13
|
imbi12d |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) <-> ( X e. ( `' F " { ( F ` x ) } ) -> ( Y e. ( `' F " { ( F ` x ) } ) <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) |
15 |
10 14
|
syl5ibr |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) |
16 |
15
|
rexlimivw |
|- ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) |
17 |
1
|
elsetpreimafv |
|- ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) |
18 |
16 17
|
syl11 |
|- ( F Fn A -> ( S e. P -> ( X e. S -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) ) ) |
19 |
18
|
3imp |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |