Metamath Proof Explorer


Theorem elsetpreimafveqfv

Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion elsetpreimafveqfv
|- ( ( F Fn A /\ ( S e. P /\ X e. S /\ Y e. S ) ) -> ( F ` X ) = ( F ` Y ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafvbi
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) )
3 simpr
 |-  ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` Y ) = ( F ` X ) )
4 3 eqcomd
 |-  ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` X ) = ( F ` Y ) )
5 2 4 syl6bi
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) )
6 5 3exp
 |-  ( F Fn A -> ( S e. P -> ( X e. S -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) ) ) )
7 6 3imp2
 |-  ( ( F Fn A /\ ( S e. P /\ X e. S /\ Y e. S ) ) -> ( F ` X ) = ( F ` Y ) )