| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | elsetpreimafvbi |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) | 
						
							| 3 |  | simpr |  |-  ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` Y ) = ( F ` X ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` X ) = ( F ` Y ) ) | 
						
							| 5 | 2 4 | biimtrdi |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) ) | 
						
							| 6 | 5 | 3exp |  |-  ( F Fn A -> ( S e. P -> ( X e. S -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) ) ) ) | 
						
							| 7 | 6 | 3imp2 |  |-  ( ( F Fn A /\ ( S e. P /\ X e. S /\ Y e. S ) ) -> ( F ` X ) = ( F ` Y ) ) |