Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
1
|
elsetpreimafvbi |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S <-> ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) ) ) |
3 |
|
simpr |
|- ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` Y ) = ( F ` X ) ) |
4 |
3
|
eqcomd |
|- ( ( Y e. A /\ ( F ` Y ) = ( F ` X ) ) -> ( F ` X ) = ( F ` Y ) ) |
5 |
2 4
|
syl6bi |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) ) |
6 |
5
|
3exp |
|- ( F Fn A -> ( S e. P -> ( X e. S -> ( Y e. S -> ( F ` X ) = ( F ` Y ) ) ) ) ) |
7 |
6
|
3imp2 |
|- ( ( F Fn A /\ ( S e. P /\ X e. S /\ Y e. S ) ) -> ( F ` X ) = ( F ` Y ) ) |