Metamath Proof Explorer


Theorem elsetpreimafveqfv

Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion elsetpreimafveqfv ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆𝑃𝑋𝑆𝑌𝑆 ) ) → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 1 elsetpreimafvbi ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( 𝑌𝑆 ↔ ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) ) )
3 simpr ( ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) → ( 𝐹𝑌 ) = ( 𝐹𝑋 ) )
4 3 eqcomd ( ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) )
5 2 4 syl6bi ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( 𝑌𝑆 → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ) )
6 5 3exp ( 𝐹 Fn 𝐴 → ( 𝑆𝑃 → ( 𝑋𝑆 → ( 𝑌𝑆 → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ) ) ) )
7 6 3imp2 ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆𝑃𝑋𝑆𝑌𝑆 ) ) → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) )