Metamath Proof Explorer


Theorem elsetpreimafveqfv

Description: The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafveqfv F Fn A S P X S Y S F X = F Y

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafvbi F Fn A S P X S Y S Y A F Y = F X
3 simpr Y A F Y = F X F Y = F X
4 3 eqcomd Y A F Y = F X F X = F Y
5 2 4 syl6bi F Fn A S P X S Y S F X = F Y
6 5 3exp F Fn A S P X S Y S F X = F Y
7 6 3imp2 F Fn A S P X S Y S F X = F Y