Metamath Proof Explorer


Theorem eqfvelsetpreimafv

Description: If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion eqfvelsetpreimafv F Fn A S P X S Y A F Y = F X Y S

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafvbi F Fn A S P X S Y S Y A F Y = F X
3 2 biimprd F Fn A S P X S Y A F Y = F X Y S