Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Preimages of function values
eqfvelsetpreimafv
Metamath Proof Explorer
Description: If an element of the domain of the function has the same function
value as an element of the preimage of a function value, then it is an
element of the same preimage. (Contributed by AV , 9-Mar-2024)
Ref
Expression
Hypothesis
setpreimafvex.p
⊢ P = z | ∃ x ∈ A z = F -1 F ⁡ x
Assertion
eqfvelsetpreimafv
⊢ F Fn A ∧ S ∈ P ∧ X ∈ S → Y ∈ A ∧ F ⁡ Y = F ⁡ X → Y ∈ S
Proof
Step
Hyp
Ref
Expression
1
setpreimafvex.p
⊢ P = z | ∃ x ∈ A z = F -1 F ⁡ x
2
1
elsetpreimafvbi
⊢ F Fn A ∧ S ∈ P ∧ X ∈ S → Y ∈ S ↔ Y ∈ A ∧ F ⁡ Y = F ⁡ X
3
2
biimprd
⊢ F Fn A ∧ S ∈ P ∧ X ∈ S → Y ∈ A ∧ F ⁡ Y = F ⁡ X → Y ∈ S