Metamath Proof Explorer


Theorem eqfvelsetpreimafv

Description: If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion eqfvelsetpreimafv ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) → 𝑌𝑆 ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 1 elsetpreimafvbi ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( 𝑌𝑆 ↔ ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) ) )
3 2 biimprd ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( ( 𝑌𝐴 ∧ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) → 𝑌𝑆 ) )