Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Preimages of function values
eqfvelsetpreimafv
Metamath Proof Explorer
Description: If an element of the domain of the function has the same function
value as an element of the preimage of a function value, then it is an
element of the same preimage. (Contributed by AV , 9-Mar-2024)
Ref
Expression
Hypothesis
setpreimafvex.p
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) }
Assertion
eqfvelsetpreimafv
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) → 𝑌 ∈ 𝑆 ) )
Proof
Step
Hyp
Ref
Expression
1
setpreimafvex.p
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) }
2
1
elsetpreimafvbi
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑌 ∈ 𝑆 ↔ ( 𝑌 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) )
3
2
biimprd
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) → 𝑌 ∈ 𝑆 ) )