Metamath Proof Explorer


Theorem elsetpreimafvrab

Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion elsetpreimafvrab ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → 𝑆 = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = ( 𝐹𝑋 ) } )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 1 elsetpreimafvbi ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( 𝑦𝑆 ↔ ( 𝑦𝐴 ∧ ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) ) )
3 fveqeq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) = ( 𝐹𝑋 ) ↔ ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) )
4 3 elrab ( 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = ( 𝐹𝑋 ) } ↔ ( 𝑦𝐴 ∧ ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) )
5 2 4 bitr4di ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → ( 𝑦𝑆𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = ( 𝐹𝑋 ) } ) )
6 5 eqrdv ( ( 𝐹 Fn 𝐴𝑆𝑃𝑋𝑆 ) → 𝑆 = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = ( 𝐹𝑋 ) } )