Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
1
|
elsetpreimafvbi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) ) ) |
3 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
4 |
3
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
5 |
2 4
|
bitr4di |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } ) ) |
6 |
5
|
eqrdv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } ) |