| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 | 1 | elsetpreimafvbi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑆  ∈  𝑃  ∧  𝑋  ∈  𝑆 )  →  ( 𝑦  ∈  𝑆  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 3 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 4 | 3 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) }  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 5 | 2 4 | bitr4di | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑆  ∈  𝑃  ∧  𝑋  ∈  𝑆 )  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) } ) ) | 
						
							| 6 | 5 | eqrdv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑆  ∈  𝑃  ∧  𝑋  ∈  𝑆 )  →  𝑆  =  { 𝑥  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) } ) |