Metamath Proof Explorer


Theorem elsetpreimafvrab

Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafvrab F Fn A S P X S S = x A | F x = F X

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafvbi F Fn A S P X S y S y A F y = F X
3 fveqeq2 x = y F x = F X F y = F X
4 3 elrab y x A | F x = F X y A F y = F X
5 2 4 bitr4di F Fn A S P X S y S y x A | F x = F X
6 5 eqrdv F Fn A S P X S S = x A | F x = F X