Metamath Proof Explorer


Theorem elsetpreimafvrab

Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion elsetpreimafvrab
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafvbi
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) )
3 fveqeq2
 |-  ( x = y -> ( ( F ` x ) = ( F ` X ) <-> ( F ` y ) = ( F ` X ) ) )
4 3 elrab
 |-  ( y e. { x e. A | ( F ` x ) = ( F ` X ) } <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) )
5 2 4 bitr4di
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> y e. { x e. A | ( F ` x ) = ( F ` X ) } ) )
6 5 eqrdv
 |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } )