Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
1
|
elsetpreimafvbi |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) ) |
3 |
|
fveqeq2 |
|- ( x = y -> ( ( F ` x ) = ( F ` X ) <-> ( F ` y ) = ( F ` X ) ) ) |
4 |
3
|
elrab |
|- ( y e. { x e. A | ( F ` x ) = ( F ` X ) } <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) |
5 |
2 4
|
bitr4di |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> y e. { x e. A | ( F ` x ) = ( F ` X ) } ) ) |
6 |
5
|
eqrdv |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) |