| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | elsetpreimafvbi |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) ) | 
						
							| 3 |  | fveqeq2 |  |-  ( x = y -> ( ( F ` x ) = ( F ` X ) <-> ( F ` y ) = ( F ` X ) ) ) | 
						
							| 4 | 3 | elrab |  |-  ( y e. { x e. A | ( F ` x ) = ( F ` X ) } <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) | 
						
							| 5 | 2 4 | bitr4di |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> y e. { x e. A | ( F ` x ) = ( F ` X ) } ) ) | 
						
							| 6 | 5 | eqrdv |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) |