Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
1
|
fvelsetpreimafv |
|- ( ( F Fn A /\ S e. P ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) |
3 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
4 |
3
|
sneqd |
|- ( y = x -> { ( F ` y ) } = { ( F ` x ) } ) |
5 |
4
|
imaeq2d |
|- ( y = x -> ( `' F " { ( F ` y ) } ) = ( `' F " { ( F ` x ) } ) ) |
6 |
5
|
eqeq2d |
|- ( y = x -> ( S = ( `' F " { ( F ` y ) } ) <-> S = ( `' F " { ( F ` x ) } ) ) ) |
7 |
6
|
cbvrexvw |
|- ( E. y e. S S = ( `' F " { ( F ` y ) } ) <-> E. x e. S S = ( `' F " { ( F ` x ) } ) ) |
8 |
2 7
|
sylibr |
|- ( ( F Fn A /\ S e. P ) -> E. y e. S S = ( `' F " { ( F ` y ) } ) ) |
9 |
8
|
3adant3 |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> E. y e. S S = ( `' F " { ( F ` y ) } ) ) |
10 |
|
imaeq2 |
|- ( S = ( `' F " { ( F ` y ) } ) -> ( F " S ) = ( F " ( `' F " { ( F ` y ) } ) ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " S ) = ( F " ( `' F " { ( F ` y ) } ) ) ) |
12 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
13 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) |
14 |
12 13
|
syl |
|- ( F Fn A -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) |
17 |
1
|
elsetpreimafvbi |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) ) |
18 |
|
fnfvelrn |
|- ( ( F Fn A /\ y e. A ) -> ( F ` y ) e. ran F ) |
19 |
18
|
snssd |
|- ( ( F Fn A /\ y e. A ) -> { ( F ` y ) } C_ ran F ) |
20 |
|
df-ss |
|- ( { ( F ` y ) } C_ ran F <-> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) |
21 |
19 20
|
sylib |
|- ( ( F Fn A /\ y e. A ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) |
22 |
21
|
3adant3 |
|- ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) |
23 |
|
simp3 |
|- ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( F ` y ) = ( F ` X ) ) |
24 |
23
|
sneqd |
|- ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> { ( F ` y ) } = { ( F ` X ) } ) |
25 |
22 24
|
eqtrd |
|- ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) |
26 |
25
|
3expib |
|- ( F Fn A -> ( ( y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) |
27 |
26
|
3ad2ant1 |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( ( y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) |
28 |
17 27
|
sylbid |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) |
29 |
28
|
imp |
|- ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) |
30 |
29
|
3adant3 |
|- ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) |
31 |
11 16 30
|
3eqtrd |
|- ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " S ) = { ( F ` X ) } ) |
32 |
31
|
rexlimdv3a |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( E. y e. S S = ( `' F " { ( F ` y ) } ) -> ( F " S ) = { ( F ` X ) } ) ) |
33 |
9 32
|
mpd |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> ( F " S ) = { ( F ` X ) } ) |