| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | fvelsetpreimafv |  |-  ( ( F Fn A /\ S e. P ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 3 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 4 | 3 | sneqd |  |-  ( y = x -> { ( F ` y ) } = { ( F ` x ) } ) | 
						
							| 5 | 4 | imaeq2d |  |-  ( y = x -> ( `' F " { ( F ` y ) } ) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( y = x -> ( S = ( `' F " { ( F ` y ) } ) <-> S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 7 | 6 | cbvrexvw |  |-  ( E. y e. S S = ( `' F " { ( F ` y ) } ) <-> E. x e. S S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 8 | 2 7 | sylibr |  |-  ( ( F Fn A /\ S e. P ) -> E. y e. S S = ( `' F " { ( F ` y ) } ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> E. y e. S S = ( `' F " { ( F ` y ) } ) ) | 
						
							| 10 |  | imaeq2 |  |-  ( S = ( `' F " { ( F ` y ) } ) -> ( F " S ) = ( F " ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " S ) = ( F " ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 12 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 13 |  | funimacnv |  |-  ( Fun F -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( F Fn A -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " ( `' F " { ( F ` y ) } ) ) = ( { ( F ` y ) } i^i ran F ) ) | 
						
							| 17 | 1 | elsetpreimafvbi |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S <-> ( y e. A /\ ( F ` y ) = ( F ` X ) ) ) ) | 
						
							| 18 |  | fnfvelrn |  |-  ( ( F Fn A /\ y e. A ) -> ( F ` y ) e. ran F ) | 
						
							| 19 | 18 | snssd |  |-  ( ( F Fn A /\ y e. A ) -> { ( F ` y ) } C_ ran F ) | 
						
							| 20 |  | dfss2 |  |-  ( { ( F ` y ) } C_ ran F <-> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) | 
						
							| 21 | 19 20 | sylib |  |-  ( ( F Fn A /\ y e. A ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` y ) } ) | 
						
							| 23 |  | simp3 |  |-  ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( F ` y ) = ( F ` X ) ) | 
						
							| 24 | 23 | sneqd |  |-  ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> { ( F ` y ) } = { ( F ` X ) } ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ( F Fn A /\ y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) | 
						
							| 26 | 25 | 3expib |  |-  ( F Fn A -> ( ( y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( ( y e. A /\ ( F ` y ) = ( F ` X ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) | 
						
							| 28 | 17 27 | sylbid |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( y e. S -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( { ( F ` y ) } i^i ran F ) = { ( F ` X ) } ) | 
						
							| 31 | 11 16 30 | 3eqtrd |  |-  ( ( ( F Fn A /\ S e. P /\ X e. S ) /\ y e. S /\ S = ( `' F " { ( F ` y ) } ) ) -> ( F " S ) = { ( F ` X ) } ) | 
						
							| 32 | 31 | rexlimdv3a |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( E. y e. S S = ( `' F " { ( F ` y ) } ) -> ( F " S ) = { ( F ` X ) } ) ) | 
						
							| 33 | 9 32 | mpd |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> ( F " S ) = { ( F ` X ) } ) |