| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
| 2 |
1
|
0nelsetpreimafv |
|- ( F Fn A -> (/) e/ P ) |
| 3 |
|
elnelne2 |
|- ( ( S e. P /\ (/) e/ P ) -> S =/= (/) ) |
| 4 |
|
n0 |
|- ( S =/= (/) <-> E. y y e. S ) |
| 5 |
3 4
|
sylib |
|- ( ( S e. P /\ (/) e/ P ) -> E. y y e. S ) |
| 6 |
5
|
expcom |
|- ( (/) e/ P -> ( S e. P -> E. y y e. S ) ) |
| 7 |
2 6
|
syl |
|- ( F Fn A -> ( S e. P -> E. y y e. S ) ) |
| 8 |
7
|
imp |
|- ( ( F Fn A /\ S e. P ) -> E. y y e. S ) |
| 9 |
1
|
imaelsetpreimafv |
|- ( ( F Fn A /\ S e. P /\ y e. S ) -> ( F " S ) = { ( F ` y ) } ) |
| 10 |
9
|
3expa |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F " S ) = { ( F ` y ) } ) |
| 11 |
10
|
unieqd |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = U. { ( F ` y ) } ) |
| 12 |
|
fvex |
|- ( F ` y ) e. _V |
| 13 |
12
|
unisn |
|- U. { ( F ` y ) } = ( F ` y ) |
| 14 |
11 13
|
eqtrdi |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = ( F ` y ) ) |
| 15 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
| 16 |
15
|
biimpi |
|- ( F Fn A -> F : A --> ran F ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> F : A --> ran F ) |
| 18 |
1
|
elsetpreimafvssdm |
|- ( ( F Fn A /\ S e. P ) -> S C_ A ) |
| 19 |
18
|
sselda |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> y e. A ) |
| 20 |
17 19
|
ffvelcdmd |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F ` y ) e. ran F ) |
| 21 |
14 20
|
eqeltrd |
|- ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) e. ran F ) |
| 22 |
8 21
|
exlimddv |
|- ( ( F Fn A /\ S e. P ) -> U. ( F " S ) e. ran F ) |