Metamath Proof Explorer


Theorem uniimaelsetpreimafv

Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion uniimaelsetpreimafv
|- ( ( F Fn A /\ S e. P ) -> U. ( F " S ) e. ran F )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 0nelsetpreimafv
 |-  ( F Fn A -> (/) e/ P )
3 elnelne2
 |-  ( ( S e. P /\ (/) e/ P ) -> S =/= (/) )
4 n0
 |-  ( S =/= (/) <-> E. y y e. S )
5 3 4 sylib
 |-  ( ( S e. P /\ (/) e/ P ) -> E. y y e. S )
6 5 expcom
 |-  ( (/) e/ P -> ( S e. P -> E. y y e. S ) )
7 2 6 syl
 |-  ( F Fn A -> ( S e. P -> E. y y e. S ) )
8 7 imp
 |-  ( ( F Fn A /\ S e. P ) -> E. y y e. S )
9 1 imaelsetpreimafv
 |-  ( ( F Fn A /\ S e. P /\ y e. S ) -> ( F " S ) = { ( F ` y ) } )
10 9 3expa
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F " S ) = { ( F ` y ) } )
11 10 unieqd
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = U. { ( F ` y ) } )
12 fvex
 |-  ( F ` y ) e. _V
13 12 unisn
 |-  U. { ( F ` y ) } = ( F ` y )
14 11 13 eqtrdi
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = ( F ` y ) )
15 dffn3
 |-  ( F Fn A <-> F : A --> ran F )
16 15 biimpi
 |-  ( F Fn A -> F : A --> ran F )
17 16 ad2antrr
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> F : A --> ran F )
18 1 elsetpreimafvssdm
 |-  ( ( F Fn A /\ S e. P ) -> S C_ A )
19 18 sselda
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> y e. A )
20 17 19 ffvelrnd
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F ` y ) e. ran F )
21 14 20 eqeltrd
 |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) e. ran F )
22 8 21 exlimddv
 |-  ( ( F Fn A /\ S e. P ) -> U. ( F " S ) e. ran F )