| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | 0nelsetpreimafv |  |-  ( F Fn A -> (/) e/ P ) | 
						
							| 3 |  | elnelne2 |  |-  ( ( S e. P /\ (/) e/ P ) -> S =/= (/) ) | 
						
							| 4 |  | n0 |  |-  ( S =/= (/) <-> E. y y e. S ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( S e. P /\ (/) e/ P ) -> E. y y e. S ) | 
						
							| 6 | 5 | expcom |  |-  ( (/) e/ P -> ( S e. P -> E. y y e. S ) ) | 
						
							| 7 | 2 6 | syl |  |-  ( F Fn A -> ( S e. P -> E. y y e. S ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( F Fn A /\ S e. P ) -> E. y y e. S ) | 
						
							| 9 | 1 | imaelsetpreimafv |  |-  ( ( F Fn A /\ S e. P /\ y e. S ) -> ( F " S ) = { ( F ` y ) } ) | 
						
							| 10 | 9 | 3expa |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F " S ) = { ( F ` y ) } ) | 
						
							| 11 | 10 | unieqd |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = U. { ( F ` y ) } ) | 
						
							| 12 |  | fvex |  |-  ( F ` y ) e. _V | 
						
							| 13 | 12 | unisn |  |-  U. { ( F ` y ) } = ( F ` y ) | 
						
							| 14 | 11 13 | eqtrdi |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) = ( F ` y ) ) | 
						
							| 15 |  | dffn3 |  |-  ( F Fn A <-> F : A --> ran F ) | 
						
							| 16 | 15 | biimpi |  |-  ( F Fn A -> F : A --> ran F ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> F : A --> ran F ) | 
						
							| 18 | 1 | elsetpreimafvssdm |  |-  ( ( F Fn A /\ S e. P ) -> S C_ A ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> y e. A ) | 
						
							| 20 | 17 19 | ffvelcdmd |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> ( F ` y ) e. ran F ) | 
						
							| 21 | 14 20 | eqeltrd |  |-  ( ( ( F Fn A /\ S e. P ) /\ y e. S ) -> U. ( F " S ) e. ran F ) | 
						
							| 22 | 8 21 | exlimddv |  |-  ( ( F Fn A /\ S e. P ) -> U. ( F " S ) e. ran F ) |