Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
eqeq2 |
|- ( ( F ` X ) = ( F ` Y ) -> ( ( F ` x ) = ( F ` X ) <-> ( F ` x ) = ( F ` Y ) ) ) |
3 |
2
|
rabbidv |
|- ( ( F ` X ) = ( F ` Y ) -> { x e. A | ( F ` x ) = ( F ` X ) } = { x e. A | ( F ` x ) = ( F ` Y ) } ) |
4 |
3
|
adantl |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> { x e. A | ( F ` x ) = ( F ` X ) } = { x e. A | ( F ` x ) = ( F ` Y ) } ) |
5 |
|
id |
|- ( F Fn A -> F Fn A ) |
6 |
|
simpl |
|- ( ( S e. P /\ R e. P ) -> S e. P ) |
7 |
|
simpl |
|- ( ( X e. S /\ Y e. R ) -> X e. S ) |
8 |
5 6 7
|
3anim123i |
|- ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( F Fn A /\ S e. P /\ X e. S ) ) |
9 |
8
|
adantr |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> ( F Fn A /\ S e. P /\ X e. S ) ) |
10 |
1
|
elsetpreimafvrab |
|- ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) |
11 |
9 10
|
syl |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) |
12 |
|
simpr |
|- ( ( S e. P /\ R e. P ) -> R e. P ) |
13 |
|
simpr |
|- ( ( X e. S /\ Y e. R ) -> Y e. R ) |
14 |
5 12 13
|
3anim123i |
|- ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( F Fn A /\ R e. P /\ Y e. R ) ) |
15 |
14
|
adantr |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> ( F Fn A /\ R e. P /\ Y e. R ) ) |
16 |
1
|
elsetpreimafvrab |
|- ( ( F Fn A /\ R e. P /\ Y e. R ) -> R = { x e. A | ( F ` x ) = ( F ` Y ) } ) |
17 |
15 16
|
syl |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> R = { x e. A | ( F ` x ) = ( F ` Y ) } ) |
18 |
4 11 17
|
3eqtr4d |
|- ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> S = R ) |
19 |
18
|
ex |
|- ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( ( F ` X ) = ( F ` Y ) -> S = R ) ) |