| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | eqeq2 |  |-  ( ( F ` X ) = ( F ` Y ) -> ( ( F ` x ) = ( F ` X ) <-> ( F ` x ) = ( F ` Y ) ) ) | 
						
							| 3 | 2 | rabbidv |  |-  ( ( F ` X ) = ( F ` Y ) -> { x e. A | ( F ` x ) = ( F ` X ) } = { x e. A | ( F ` x ) = ( F ` Y ) } ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> { x e. A | ( F ` x ) = ( F ` X ) } = { x e. A | ( F ` x ) = ( F ` Y ) } ) | 
						
							| 5 |  | id |  |-  ( F Fn A -> F Fn A ) | 
						
							| 6 |  | simpl |  |-  ( ( S e. P /\ R e. P ) -> S e. P ) | 
						
							| 7 |  | simpl |  |-  ( ( X e. S /\ Y e. R ) -> X e. S ) | 
						
							| 8 | 5 6 7 | 3anim123i |  |-  ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( F Fn A /\ S e. P /\ X e. S ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> ( F Fn A /\ S e. P /\ X e. S ) ) | 
						
							| 10 | 1 | elsetpreimafvrab |  |-  ( ( F Fn A /\ S e. P /\ X e. S ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> S = { x e. A | ( F ` x ) = ( F ` X ) } ) | 
						
							| 12 |  | simpr |  |-  ( ( S e. P /\ R e. P ) -> R e. P ) | 
						
							| 13 |  | simpr |  |-  ( ( X e. S /\ Y e. R ) -> Y e. R ) | 
						
							| 14 | 5 12 13 | 3anim123i |  |-  ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( F Fn A /\ R e. P /\ Y e. R ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> ( F Fn A /\ R e. P /\ Y e. R ) ) | 
						
							| 16 | 1 | elsetpreimafvrab |  |-  ( ( F Fn A /\ R e. P /\ Y e. R ) -> R = { x e. A | ( F ` x ) = ( F ` Y ) } ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> R = { x e. A | ( F ` x ) = ( F ` Y ) } ) | 
						
							| 18 | 4 11 17 | 3eqtr4d |  |-  ( ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) /\ ( F ` X ) = ( F ` Y ) ) -> S = R ) | 
						
							| 19 | 18 | ex |  |-  ( ( F Fn A /\ ( S e. P /\ R e. P ) /\ ( X e. S /\ Y e. R ) ) -> ( ( F ` X ) = ( F ` Y ) -> S = R ) ) |