Description: Lemma 1 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fundcmpsurinj.p | |- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | |
| fundcmpsurinj.g | |- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) | ||
| Assertion | fundcmpsurinjlem1 | |- ran G = P | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | |
| 2 | fundcmpsurinj.g |  |-  G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) | |
| 3 | 2 | rnmpt |  |-  ran G = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
| 4 | 3 1 | eqtr4i | |- ran G = P |