Description: Lemma 1 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fundcmpsurinj.p | |- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
|
fundcmpsurinj.g | |- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) |
||
Assertion | fundcmpsurinjlem1 | |- ran G = P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | |- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
|
2 | fundcmpsurinj.g | |- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) |
|
3 | 2 | rnmpt | |- ran G = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
4 | 3 1 | eqtr4i | |- ran G = P |