Metamath Proof Explorer


Theorem fundcmpsurinjlem1

Description: Lemma 1 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.g
|- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) )
Assertion fundcmpsurinjlem1
|- ran G = P

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.g
 |-  G = ( x e. A |-> ( `' F " { ( F ` x ) } ) )
3 2 rnmpt
 |-  ran G = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
4 3 1 eqtr4i
 |-  ran G = P