Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fundcmpsurinj.g |
|- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) |
3 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
4 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
5 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " { ( F ` x ) } ) e. _V ) |
6 |
3 4 5
|
3syl |
|- ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` x ) } ) e. _V ) |
7 |
6
|
ralrimivw |
|- ( ( F Fn A /\ A e. V ) -> A. x e. A ( `' F " { ( F ` x ) } ) e. _V ) |
8 |
2
|
fnmpt |
|- ( A. x e. A ( `' F " { ( F ` x ) } ) e. _V -> G Fn A ) |
9 |
7 8
|
syl |
|- ( ( F Fn A /\ A e. V ) -> G Fn A ) |
10 |
1 2
|
fundcmpsurinjlem1 |
|- ran G = P |
11 |
|
df-fo |
|- ( G : A -onto-> P <-> ( G Fn A /\ ran G = P ) ) |
12 |
9 10 11
|
sylanblrc |
|- ( ( F Fn A /\ A e. V ) -> G : A -onto-> P ) |