| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fundcmpsurinj.g |  |-  G = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) | 
						
							| 3 |  | fnex |  |-  ( ( F Fn A /\ A e. V ) -> F e. _V ) | 
						
							| 4 |  | cnvexg |  |-  ( F e. _V -> `' F e. _V ) | 
						
							| 5 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " { ( F ` x ) } ) e. _V ) | 
						
							| 6 | 3 4 5 | 3syl |  |-  ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` x ) } ) e. _V ) | 
						
							| 7 | 6 | ralrimivw |  |-  ( ( F Fn A /\ A e. V ) -> A. x e. A ( `' F " { ( F ` x ) } ) e. _V ) | 
						
							| 8 | 2 | fnmpt |  |-  ( A. x e. A ( `' F " { ( F ` x ) } ) e. _V -> G Fn A ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( F Fn A /\ A e. V ) -> G Fn A ) | 
						
							| 10 | 1 2 | fundcmpsurinjlem1 |  |-  ran G = P | 
						
							| 11 |  | df-fo |  |-  ( G : A -onto-> P <-> ( G Fn A /\ ran G = P ) ) | 
						
							| 12 | 9 10 11 | sylanblrc |  |-  ( ( F Fn A /\ A e. V ) -> G : A -onto-> P ) |