Metamath Proof Explorer


Theorem fundcmpsurinjlem2

Description: Lemma 2 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.g
|- G = ( x e. A |-> ( `' F " { ( F ` x ) } ) )
Assertion fundcmpsurinjlem2
|- ( ( F Fn A /\ A e. V ) -> G : A -onto-> P )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.g
 |-  G = ( x e. A |-> ( `' F " { ( F ` x ) } ) )
3 fnex
 |-  ( ( F Fn A /\ A e. V ) -> F e. _V )
4 cnvexg
 |-  ( F e. _V -> `' F e. _V )
5 imaexg
 |-  ( `' F e. _V -> ( `' F " { ( F ` x ) } ) e. _V )
6 3 4 5 3syl
 |-  ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` x ) } ) e. _V )
7 6 ralrimivw
 |-  ( ( F Fn A /\ A e. V ) -> A. x e. A ( `' F " { ( F ` x ) } ) e. _V )
8 2 fnmpt
 |-  ( A. x e. A ( `' F " { ( F ` x ) } ) e. _V -> G Fn A )
9 7 8 syl
 |-  ( ( F Fn A /\ A e. V ) -> G Fn A )
10 1 2 fundcmpsurinjlem1
 |-  ran G = P
11 df-fo
 |-  ( G : A -onto-> P <-> ( G Fn A /\ ran G = P ) )
12 9 10 11 sylanblrc
 |-  ( ( F Fn A /\ A e. V ) -> G : A -onto-> P )