Metamath Proof Explorer


Theorem fundcmpsurinjlem2

Description: Lemma 2 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.g 𝐺 = ( 𝑥𝐴 ↦ ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
Assertion fundcmpsurinjlem2 ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐺 : 𝐴onto𝑃 )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.g 𝐺 = ( 𝑥𝐴 ↦ ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
3 fnex ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐹 ∈ V )
4 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
5 imaexg ( 𝐹 ∈ V → ( 𝐹 “ { ( 𝐹𝑥 ) } ) ∈ V )
6 3 4 5 3syl ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → ( 𝐹 “ { ( 𝐹𝑥 ) } ) ∈ V )
7 6 ralrimivw ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → ∀ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑥 ) } ) ∈ V )
8 2 fnmpt ( ∀ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑥 ) } ) ∈ V → 𝐺 Fn 𝐴 )
9 7 8 syl ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐺 Fn 𝐴 )
10 1 2 fundcmpsurinjlem1 ran 𝐺 = 𝑃
11 df-fo ( 𝐺 : 𝐴onto𝑃 ↔ ( 𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃 ) )
12 9 10 11 sylanblrc ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐺 : 𝐴onto𝑃 )