| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abrexexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∈  V ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 4 | 3 | sneqd | ⊢ ( 𝑥  =  𝑦  →  { ( 𝐹 ‘ 𝑥 ) }  =  { ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 5 | 4 | imaeq2d | ⊢ ( 𝑥  =  𝑦  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) ) | 
						
							| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 8 | 7 | abbii | ⊢ { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } | 
						
							| 9 | 8 | fundcmpsurinjpreimafv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) | 
						
							| 10 |  | foeq3 | ⊢ ( 𝑝  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  →  ( 𝑔 : 𝐴 –onto→ 𝑝  ↔  𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } ) ) | 
						
							| 11 |  | f1eq2 | ⊢ ( 𝑝  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  →  ( ℎ : 𝑝 –1-1→ 𝐵  ↔  ℎ : { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵 ) ) | 
						
							| 12 | 10 11 | 3anbi12d | ⊢ ( 𝑝  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  →  ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) )  ↔  ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) ) | 
						
							| 13 | 12 | 2exbidv | ⊢ ( 𝑝  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  →  ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) ) | 
						
							| 14 | 2 9 13 | spcedv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑝 ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) | 
						
							| 15 |  | exrot3 | ⊢ ( ∃ 𝑝 ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ∃ 𝑝 ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑔 ∃ ℎ ∃ 𝑝 ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1→ 𝐵  ∧  𝐹  =  ( ℎ  ∘  𝑔 ) ) ) |