Step |
Hyp |
Ref |
Expression |
1 |
|
abrexexg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∈ V ) |
2 |
1
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
4 |
3
|
sneqd |
⊢ ( 𝑥 = 𝑦 → { ( 𝐹 ‘ 𝑥 ) } = { ( 𝐹 ‘ 𝑦 ) } ) |
5 |
4
|
imaeq2d |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
8 |
7
|
abbii |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } |
9 |
8
|
fundcmpsurinjpreimafv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |
10 |
|
foeq3 |
⊢ ( 𝑝 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } → ( 𝑔 : 𝐴 –onto→ 𝑝 ↔ 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ) ) |
11 |
|
f1eq2 |
⊢ ( 𝑝 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } → ( ℎ : 𝑝 –1-1→ 𝐵 ↔ ℎ : { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵 ) ) |
12 |
10 11
|
3anbi12d |
⊢ ( 𝑝 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } → ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ↔ ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
13 |
12
|
2exbidv |
⊢ ( 𝑝 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } → ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
14 |
2 9 13
|
spcedv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑝 ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |
15 |
|
exrot3 |
⊢ ( ∃ 𝑝 ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ∃ 𝑝 ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |
16 |
14 15
|
sylib |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑝 ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |