Step |
Hyp |
Ref |
Expression |
1 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
2 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
4 |
|
abrexexg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∈ V ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
6
|
sneqd |
⊢ ( 𝑦 = 𝑥 → { ( 𝐹 ‘ 𝑦 ) } = { ( 𝐹 ‘ 𝑥 ) } ) |
8 |
7
|
imaeq2d |
⊢ ( 𝑦 = 𝑥 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
10 |
9
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
11 |
10
|
abbii |
⊢ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
12 |
11
|
fundcmpsurbijinjpreimafv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
13 |
|
foeq3 |
⊢ ( 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } → ( 𝑔 : 𝐴 –onto→ 𝑝 ↔ 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( 𝑔 : 𝐴 –onto→ 𝑝 ↔ 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) ) |
15 |
|
f1oeq23 |
⊢ ( ( 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ 𝑞 = ( 𝐹 “ 𝐴 ) ) → ( ℎ : 𝑝 –1-1-onto→ 𝑞 ↔ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( ℎ : 𝑝 –1-1-onto→ 𝑞 ↔ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ) ) |
17 |
|
f1eq2 |
⊢ ( 𝑞 = ( 𝐹 “ 𝐴 ) → ( 𝑖 : 𝑞 –1-1→ 𝐵 ↔ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( 𝑖 : 𝑞 –1-1→ 𝐵 ↔ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
19 |
14 16 18
|
3anbi123d |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ↔ ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) ) |
20 |
19
|
anbi1d |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ( ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) ) |
21 |
20
|
3exbidv |
⊢ ( ( 𝑞 = ( 𝐹 “ 𝐴 ) ∧ 𝑝 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ) → ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) ) |
22 |
21
|
spc2egv |
⊢ ( ( ( 𝐹 “ 𝐴 ) ∈ V ∧ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∈ V ) → ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) → ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( 𝐹 “ 𝐴 ) ∈ V ∧ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∈ V ) ∧ ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } ∧ ℎ : { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) → ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
24 |
3 5 12 23
|
syl21anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
25 |
|
exrot4 |
⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
26 |
|
excom13 |
⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
27 |
26
|
2exbii |
⊢ ( ∃ 𝑔 ∃ ℎ ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
28 |
25 27
|
bitri |
⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |
29 |
24 28
|
sylib |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝 ∧ ℎ : 𝑝 –1-1-onto→ 𝑞 ∧ 𝑖 : 𝑞 –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |