| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 2 |  | funimaexg | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  “  𝐴 )  ∈  V ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  “  𝐴 )  ∈  V ) | 
						
							| 4 |  | abrexexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∈  V ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∈  V ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 | 6 | sneqd | ⊢ ( 𝑦  =  𝑥  →  { ( 𝐹 ‘ 𝑦 ) }  =  { ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 8 | 7 | imaeq2d | ⊢ ( 𝑦  =  𝑥  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) ) | 
						
							| 10 | 9 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 11 | 10 | abbii | ⊢ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 12 | 11 | fundcmpsurbijinjpreimafv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 13 |  | foeq3 | ⊢ ( 𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  →  ( 𝑔 : 𝐴 –onto→ 𝑝  ↔  𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( 𝑔 : 𝐴 –onto→ 𝑝  ↔  𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } ) ) | 
						
							| 15 |  | f1oeq23 | ⊢ ( ( 𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  𝑞  =  ( 𝐹  “  𝐴 ) )  →  ( ℎ : 𝑝 –1-1-onto→ 𝑞  ↔  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( ℎ : 𝑝 –1-1-onto→ 𝑞  ↔  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 17 |  | f1eq2 | ⊢ ( 𝑞  =  ( 𝐹  “  𝐴 )  →  ( 𝑖 : 𝑞 –1-1→ 𝐵  ↔  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( 𝑖 : 𝑞 –1-1→ 𝐵  ↔  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 19 | 14 16 18 | 3anbi123d | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ↔  ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ( ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) ) | 
						
							| 21 | 20 | 3exbidv | ⊢ ( ( 𝑞  =  ( 𝐹  “  𝐴 )  ∧  𝑝  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } )  →  ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) ) | 
						
							| 22 | 21 | spc2egv | ⊢ ( ( ( 𝐹  “  𝐴 )  ∈  V  ∧  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∈  V )  →  ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  →  ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( ( 𝐹  “  𝐴 )  ∈  V  ∧  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∈  V )  ∧  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) }  ∧  ℎ : { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) } –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) )  →  ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 24 | 3 5 12 23 | syl21anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 25 |  | exrot4 | ⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 26 |  | excom13 | ⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 27 | 26 | 2exbii | ⊢ ( ∃ 𝑔 ∃ ℎ ∃ 𝑞 ∃ 𝑝 ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 28 | 25 27 | bitri | ⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) | 
						
							| 29 | 24 28 | sylib | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ∃ 𝑝 ∃ 𝑞 ( ( 𝑔 : 𝐴 –onto→ 𝑝  ∧  ℎ : 𝑝 –1-1-onto→ 𝑞  ∧  𝑖 : 𝑞 –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) |