| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fundcmpsurinj.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
| 2 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 3 |
2
|
mptexd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∈ V ) |
| 4 |
1
|
setpreimafvex |
⊢ ( 𝐴 ∈ 𝑉 → 𝑃 ∈ V ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝑃 ∈ V ) |
| 6 |
5
|
mptexd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∈ V ) |
| 7 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
| 8 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 10 |
9
|
resiexd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) ∈ V ) |
| 11 |
3 6 10
|
3jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∈ V ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∈ V ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) ∈ V ) ) |
| 12 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 13 |
|
fveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 14 |
13
|
sneqd |
⊢ ( 𝑎 = 𝑥 → { ( 𝐹 ‘ 𝑎 ) } = { ( 𝐹 ‘ 𝑥 ) } ) |
| 15 |
14
|
imaeq2d |
⊢ ( 𝑎 = 𝑥 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 16 |
15
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 17 |
1 16
|
fundcmpsurinjlem2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) |
| 18 |
12 17
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) |
| 19 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) |
| 20 |
1 19
|
imasetpreimafvbij |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 21 |
12 20
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
| 22 |
|
f1oi |
⊢ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1-onto→ ( 𝐹 “ 𝐴 ) |
| 23 |
|
f1of1 |
⊢ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1-onto→ ( 𝐹 “ 𝐴 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ ( 𝐹 “ 𝐴 ) ) |
| 24 |
|
fimass |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
| 25 |
|
f1ss |
⊢ ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ ( 𝐹 “ 𝐴 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) |
| 26 |
24 25
|
sylan2 |
⊢ ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ ( 𝐹 “ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) |
| 27 |
26
|
ex |
⊢ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ ( 𝐹 “ 𝐴 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
| 28 |
22 23 27
|
mp2b |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) |
| 30 |
18 21 29
|
3jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
| 31 |
12
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 Fn 𝐴 ) |
| 32 |
|
uniimaprimaeqfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 33 |
31 32
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) = ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 35 |
34
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 36 |
|
ffrn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 38 |
37
|
funfvima2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝐴 ) ) |
| 39 |
|
fvresi |
⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝐴 ) → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 41 |
40
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 42 |
35 41
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 43 |
12
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 44 |
2
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
| 46 |
1
|
preimafvelsetpreimafv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ∈ 𝑃 ) |
| 47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐴 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ∈ 𝑃 ) |
| 48 |
|
eqidd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) |
| 49 |
|
eqidd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) ) |
| 50 |
|
imaeq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) |
| 51 |
50
|
unieqd |
⊢ ( 𝑦 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) → ∪ ( 𝐹 “ 𝑦 ) = ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝑦 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) = ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) |
| 53 |
47 48 49 52
|
fmptco |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) |
| 54 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 55 |
12 54
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 57 |
42 53 56
|
3eqtr4rd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 = ( ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) |
| 58 |
|
f1of |
⊢ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1-onto→ ( 𝐹 “ 𝐴 ) → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) ⟶ ( 𝐹 “ 𝐴 ) ) |
| 59 |
22 58
|
mp1i |
⊢ ( 𝐹 Fn 𝐴 → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) ⟶ ( 𝐹 “ 𝐴 ) ) |
| 60 |
|
fnima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝐴 ) = ran 𝐹 ) |
| 61 |
60
|
eqcomd |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = ( 𝐹 “ 𝐴 ) ) |
| 62 |
61
|
feq2d |
⊢ ( 𝐹 Fn 𝐴 → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) : ran 𝐹 ⟶ ( 𝐹 “ 𝐴 ) ↔ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) ⟶ ( 𝐹 “ 𝐴 ) ) ) |
| 63 |
59 62
|
mpbird |
⊢ ( 𝐹 Fn 𝐴 → ( I ↾ ( 𝐹 “ 𝐴 ) ) : ran 𝐹 ⟶ ( 𝐹 “ 𝐴 ) ) |
| 64 |
1
|
uniimaelsetpreimafv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝑃 ) → ∪ ( 𝐹 “ 𝑦 ) ∈ ran 𝐹 ) |
| 65 |
63 64
|
cofmpt |
⊢ ( 𝐹 Fn 𝐴 → ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) ) |
| 66 |
65
|
eqcomd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) = ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ) |
| 67 |
31 66
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) = ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ) |
| 68 |
67
|
coeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑃 ↦ ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ‘ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) |
| 69 |
57 68
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) |
| 70 |
30 69
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) |
| 71 |
|
foeq1 |
⊢ ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) → ( 𝑔 : 𝐴 –onto→ 𝑃 ↔ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) ) |
| 72 |
71
|
3ad2ant1 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( 𝑔 : 𝐴 –onto→ 𝑃 ↔ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) ) |
| 73 |
|
f1oeq1 |
⊢ ( ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) → ( ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) ) |
| 74 |
73
|
3ad2ant2 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) ) |
| 75 |
|
f1eq1 |
⊢ ( 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) → ( 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ↔ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
| 76 |
75
|
3ad2ant3 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ↔ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) |
| 77 |
72 74 76
|
3anbi123d |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ↔ ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ) ) |
| 78 |
|
simp3 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) |
| 79 |
|
simp2 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) |
| 80 |
78 79
|
coeq12d |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( 𝑖 ∘ ℎ ) = ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ) |
| 81 |
|
simp1 |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) |
| 82 |
80 81
|
coeq12d |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ↔ 𝐹 = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) |
| 84 |
77 83
|
anbi12d |
⊢ ( ( 𝑔 = ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∧ ℎ = ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∧ 𝑖 = ( I ↾ ( 𝐹 “ 𝐴 ) ) ) → ( ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ↔ ( ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) ) |
| 85 |
84
|
spc3egv |
⊢ ( ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ∈ V ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ∈ V ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) ∈ V ) → ( ( ( ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ∧ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ ( I ↾ ( 𝐹 “ 𝐴 ) ) : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( ( I ↾ ( 𝐹 “ 𝐴 ) ) ∘ ( 𝑦 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑦 ) ) ) ∘ ( 𝑎 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) ) |
| 86 |
11 70 85
|
sylc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑖 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑖 ∘ ℎ ) ∘ 𝑔 ) ) ) |