| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 3 | 2 | mptexd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∈  V ) | 
						
							| 4 | 1 | setpreimafvex | ⊢ ( 𝐴  ∈  𝑉  →  𝑃  ∈  V ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝑃  ∈  V ) | 
						
							| 6 | 5 | mptexd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∈  V ) | 
						
							| 7 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 8 |  | funimaexg | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  “  𝐴 )  ∈  V ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  “  𝐴 )  ∈  V ) | 
						
							| 10 | 9 | resiexd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) )  ∈  V ) | 
						
							| 11 | 3 6 10 | 3jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∈  V  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∈  V  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) )  ∈  V ) ) | 
						
							| 12 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 13 | sneqd | ⊢ ( 𝑎  =  𝑥  →  { ( 𝐹 ‘ 𝑎 ) }  =  { ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 15 | 14 | imaeq2d | ⊢ ( 𝑎  =  𝑥  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 16 | 15 | cbvmptv | ⊢ ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 17 | 1 16 | fundcmpsurinjlem2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) | 
						
							| 18 | 12 17 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) | 
						
							| 20 | 1 19 | imasetpreimafvbij | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 21 | 12 20 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 22 |  | f1oi | ⊢ (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1-onto→ ( 𝐹  “  𝐴 ) | 
						
							| 23 |  | f1of1 | ⊢ ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1-onto→ ( 𝐹  “  𝐴 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ ( 𝐹  “  𝐴 ) ) | 
						
							| 24 |  | fimass | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹  “  𝐴 )  ⊆  𝐵 ) | 
						
							| 25 |  | f1ss | ⊢ ( ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ ( 𝐹  “  𝐴 )  ∧  ( 𝐹  “  𝐴 )  ⊆  𝐵 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ ( 𝐹  “  𝐴 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) | 
						
							| 27 | 26 | ex | ⊢ ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ ( 𝐹  “  𝐴 )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 28 | 22 23 27 | mp2b | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) | 
						
							| 30 | 18 21 29 | 3jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 31 | 12 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹  Fn  𝐴 ) | 
						
							| 32 |  | uniimaprimaeqfv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑎  ∈  𝐴 )  →  ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 33 | 31 32 | sylan | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) )  =  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 35 | 34 | mpteq2dva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) )  =  ( 𝑎  ∈  𝐴  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) ) | 
						
							| 36 |  | ffrn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 38 | 37 | funfvima2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  ( 𝐹  “  𝐴 ) ) | 
						
							| 39 |  | fvresi | ⊢ ( ( 𝐹 ‘ 𝑎 )  ∈  ( 𝐹  “  𝐴 )  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 41 | 40 | mpteq2dva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ( 𝐹 ‘ 𝑎 ) ) )  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 42 | 35 41 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) )  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 43 | 12 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 44 | 2 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  𝐴  ∈  𝑉 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  𝐴 ) | 
						
							| 46 | 1 | preimafvelsetpreimafv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  ∈  𝑃 ) | 
						
							| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  ∧  𝑎  ∈  𝐴 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  ∈  𝑃 ) | 
						
							| 48 |  | eqidd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) | 
						
							| 49 |  | eqidd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  =  ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 50 |  | imaeq2 | ⊢ ( 𝑦  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  →  ( 𝐹  “  𝑦 )  =  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) | 
						
							| 51 | 50 | unieqd | ⊢ ( 𝑦  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  →  ∪  ( 𝐹  “  𝑦 )  =  ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑦  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } )  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) )  =  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) | 
						
							| 53 | 47 48 49 52 | fmptco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) )  =  ( 𝑎  ∈  𝐴  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) | 
						
							| 54 |  | dffn5 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 55 | 12 54 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 57 | 42 53 56 | 3eqtr4rd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹  =  ( ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) | 
						
							| 58 |  | f1of | ⊢ ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1-onto→ ( 𝐹  “  𝐴 )  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) ⟶ ( 𝐹  “  𝐴 ) ) | 
						
							| 59 | 22 58 | mp1i | ⊢ ( 𝐹  Fn  𝐴  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) ⟶ ( 𝐹  “  𝐴 ) ) | 
						
							| 60 |  | fnima | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐹  “  𝐴 )  =  ran  𝐹 ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( 𝐹  Fn  𝐴  →  ran  𝐹  =  ( 𝐹  “  𝐴 ) ) | 
						
							| 62 | 61 | feq2d | ⊢ ( 𝐹  Fn  𝐴  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) : ran  𝐹 ⟶ ( 𝐹  “  𝐴 )  ↔  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) ⟶ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 63 | 59 62 | mpbird | ⊢ ( 𝐹  Fn  𝐴  →  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ran  𝐹 ⟶ ( 𝐹  “  𝐴 ) ) | 
						
							| 64 | 1 | uniimaelsetpreimafv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑦  ∈  𝑃 )  →  ∪  ( 𝐹  “  𝑦 )  ∈  ran  𝐹 ) | 
						
							| 65 | 63 64 | cofmpt | ⊢ ( 𝐹  Fn  𝐴  →  ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  =  ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 66 | 65 | eqcomd | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  =  ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 67 | 31 66 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  =  ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 68 | 67 | coeq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑦  ∈  𝑃  ↦  ( (  I   ↾  ( 𝐹  “  𝐴 ) ) ‘ ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) )  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) | 
						
							| 69 | 57 68 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) | 
						
							| 70 | 30 69 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ( ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) | 
						
							| 71 |  | foeq1 | ⊢ ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  →  ( 𝑔 : 𝐴 –onto→ 𝑃  ↔  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) ) | 
						
							| 72 | 71 | 3ad2ant1 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( 𝑔 : 𝐴 –onto→ 𝑃  ↔  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃 ) ) | 
						
							| 73 |  | f1oeq1 | ⊢ ( ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  →  ( ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 74 | 73 | 3ad2ant2 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 75 |  | f1eq1 | ⊢ ( 𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) )  →  ( 𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵  ↔  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 76 | 75 | 3ad2ant3 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( 𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵  ↔  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) | 
						
							| 77 | 72 74 76 | 3anbi123d | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( ( 𝑔 : 𝐴 –onto→ 𝑃  ∧  ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ↔  ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 ) ) ) | 
						
							| 78 |  | simp3 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 79 |  | simp2 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 80 | 78 79 | coeq12d | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( 𝑖  ∘  ℎ )  =  ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 81 |  | simp1 | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) | 
						
							| 82 | 80 81 | coeq12d | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 )  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) | 
						
							| 83 | 82 | eqeq2d | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( 𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 )  ↔  𝐹  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) | 
						
							| 84 | 77 83 | anbi12d | ⊢ ( ( 𝑔  =  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∧  ℎ  =  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∧  𝑖  =  (  I   ↾  ( 𝐹  “  𝐴 ) ) )  →  ( ( ( 𝑔 : 𝐴 –onto→ 𝑃  ∧  ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) )  ↔  ( ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) ) ) ) | 
						
							| 85 | 84 | spc3egv | ⊢ ( ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) )  ∈  V  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) )  ∈  V  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) )  ∈  V )  →  ( ( ( ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) : 𝐴 –onto→ 𝑃  ∧  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  (  I   ↾  ( 𝐹  “  𝐴 ) ) : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( (  I   ↾  ( 𝐹  “  𝐴 ) )  ∘  ( 𝑦  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑦 ) ) )  ∘  ( 𝑎  ∈  𝐴  ↦  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑎 ) } ) ) ) )  →  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑃  ∧  ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) ) | 
						
							| 86 | 11 70 85 | sylc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  ∃ 𝑔 ∃ ℎ ∃ 𝑖 ( ( 𝑔 : 𝐴 –onto→ 𝑃  ∧  ℎ : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ∧  𝑖 : ( 𝐹  “  𝐴 ) –1-1→ 𝐵 )  ∧  𝐹  =  ( ( 𝑖  ∘  ℎ )  ∘  𝑔 ) ) ) |