| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | simpr |  |-  ( ( F : A --> B /\ A e. V ) -> A e. V ) | 
						
							| 3 | 2 | mptexd |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V ) | 
						
							| 4 | 1 | setpreimafvex |  |-  ( A e. V -> P e. _V ) | 
						
							| 5 | 4 | adantl |  |-  ( ( F : A --> B /\ A e. V ) -> P e. _V ) | 
						
							| 6 | 5 | mptexd |  |-  ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) e. _V ) | 
						
							| 7 |  | ffun |  |-  ( F : A --> B -> Fun F ) | 
						
							| 8 |  | funimaexg |  |-  ( ( Fun F /\ A e. V ) -> ( F " A ) e. _V ) | 
						
							| 9 | 7 8 | sylan |  |-  ( ( F : A --> B /\ A e. V ) -> ( F " A ) e. _V ) | 
						
							| 10 | 9 | resiexd |  |-  ( ( F : A --> B /\ A e. V ) -> ( _I |` ( F " A ) ) e. _V ) | 
						
							| 11 | 3 6 10 | 3jca |  |-  ( ( F : A --> B /\ A e. V ) -> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V /\ ( y e. P |-> U. ( F " y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V ) ) | 
						
							| 12 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 13 |  | fveq2 |  |-  ( a = x -> ( F ` a ) = ( F ` x ) ) | 
						
							| 14 | 13 | sneqd |  |-  ( a = x -> { ( F ` a ) } = { ( F ` x ) } ) | 
						
							| 15 | 14 | imaeq2d |  |-  ( a = x -> ( `' F " { ( F ` a ) } ) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 16 | 15 | cbvmptv |  |-  ( a e. A |-> ( `' F " { ( F ` a ) } ) ) = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) | 
						
							| 17 | 1 16 | fundcmpsurinjlem2 |  |-  ( ( F Fn A /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) | 
						
							| 18 | 12 17 | sylan |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) | 
						
							| 19 |  | eqid |  |-  ( y e. P |-> U. ( F " y ) ) = ( y e. P |-> U. ( F " y ) ) | 
						
							| 20 | 1 19 | imasetpreimafvbij |  |-  ( ( F Fn A /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) | 
						
							| 21 | 12 20 | sylan |  |-  ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) | 
						
							| 22 |  | f1oi |  |-  ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) | 
						
							| 23 |  | f1of1 |  |-  ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) ) | 
						
							| 24 |  | fimass |  |-  ( F : A --> B -> ( F " A ) C_ B ) | 
						
							| 25 |  | f1ss |  |-  ( ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) /\ ( F " A ) C_ B ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) | 
						
							| 26 | 24 25 | sylan2 |  |-  ( ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) /\ F : A --> B ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) | 
						
							| 27 | 26 | ex |  |-  ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) -> ( F : A --> B -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) | 
						
							| 28 | 22 23 27 | mp2b |  |-  ( F : A --> B -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) | 
						
							| 29 | 28 | adantr |  |-  ( ( F : A --> B /\ A e. V ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) | 
						
							| 30 | 18 21 29 | 3jca |  |-  ( ( F : A --> B /\ A e. V ) -> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) | 
						
							| 31 | 12 | adantr |  |-  ( ( F : A --> B /\ A e. V ) -> F Fn A ) | 
						
							| 32 |  | uniimaprimaeqfv |  |-  ( ( F Fn A /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) | 
						
							| 33 | 31 32 | sylan |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) = ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) | 
						
							| 35 | 34 | mpteq2dva |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) = ( a e. A |-> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) ) | 
						
							| 36 |  | ffrn |  |-  ( F : A --> B -> F : A --> ran F ) | 
						
							| 37 | 36 | adantr |  |-  ( ( F : A --> B /\ A e. V ) -> F : A --> ran F ) | 
						
							| 38 | 37 | funfvima2d |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( F ` a ) e. ( F " A ) ) | 
						
							| 39 |  | fvresi |  |-  ( ( F ` a ) e. ( F " A ) -> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) = ( F ` a ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) = ( F ` a ) ) | 
						
							| 41 | 40 | mpteq2dva |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 42 | 35 41 | eqtrd |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 43 | 12 | ad2antrr |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> F Fn A ) | 
						
							| 44 | 2 | adantr |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> A e. V ) | 
						
							| 45 |  | simpr |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> a e. A ) | 
						
							| 46 | 1 | preimafvelsetpreimafv |  |-  ( ( F Fn A /\ A e. V /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) | 
						
							| 47 | 43 44 45 46 | syl3anc |  |-  ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) | 
						
							| 48 |  | eqidd |  |-  ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) | 
						
							| 49 |  | eqidd |  |-  ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) ) | 
						
							| 50 |  | imaeq2 |  |-  ( y = ( `' F " { ( F ` a ) } ) -> ( F " y ) = ( F " ( `' F " { ( F ` a ) } ) ) ) | 
						
							| 51 | 50 | unieqd |  |-  ( y = ( `' F " { ( F ` a ) } ) -> U. ( F " y ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( y = ( `' F " { ( F ` a ) } ) -> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) = ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) | 
						
							| 53 | 47 48 49 52 | fmptco |  |-  ( ( F : A --> B /\ A e. V ) -> ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) = ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) ) | 
						
							| 54 |  | dffn5 |  |-  ( F Fn A <-> F = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 55 | 12 54 | sylib |  |-  ( F : A --> B -> F = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( F : A --> B /\ A e. V ) -> F = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 57 | 42 53 56 | 3eqtr4rd |  |-  ( ( F : A --> B /\ A e. V ) -> F = ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) | 
						
							| 58 |  | f1of |  |-  ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) -> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) | 
						
							| 59 | 22 58 | mp1i |  |-  ( F Fn A -> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) | 
						
							| 60 |  | fnima |  |-  ( F Fn A -> ( F " A ) = ran F ) | 
						
							| 61 | 60 | eqcomd |  |-  ( F Fn A -> ran F = ( F " A ) ) | 
						
							| 62 | 61 | feq2d |  |-  ( F Fn A -> ( ( _I |` ( F " A ) ) : ran F --> ( F " A ) <-> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) ) | 
						
							| 63 | 59 62 | mpbird |  |-  ( F Fn A -> ( _I |` ( F " A ) ) : ran F --> ( F " A ) ) | 
						
							| 64 | 1 | uniimaelsetpreimafv |  |-  ( ( F Fn A /\ y e. P ) -> U. ( F " y ) e. ran F ) | 
						
							| 65 | 63 64 | cofmpt |  |-  ( F Fn A -> ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) = ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) ) | 
						
							| 66 | 65 | eqcomd |  |-  ( F Fn A -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) | 
						
							| 67 | 31 66 | syl |  |-  ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) | 
						
							| 68 | 67 | coeq1d |  |-  ( ( F : A --> B /\ A e. V ) -> ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) | 
						
							| 69 | 57 68 | eqtrd |  |-  ( ( F : A --> B /\ A e. V ) -> F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) | 
						
							| 70 | 30 69 | jca |  |-  ( ( F : A --> B /\ A e. V ) -> ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) | 
						
							| 71 |  | foeq1 |  |-  ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) -> ( g : A -onto-> P <-> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) ) | 
						
							| 72 | 71 | 3ad2ant1 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( g : A -onto-> P <-> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) ) | 
						
							| 73 |  | f1oeq1 |  |-  ( h = ( y e. P |-> U. ( F " y ) ) -> ( h : P -1-1-onto-> ( F " A ) <-> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) ) | 
						
							| 74 | 73 | 3ad2ant2 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( h : P -1-1-onto-> ( F " A ) <-> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) ) | 
						
							| 75 |  | f1eq1 |  |-  ( i = ( _I |` ( F " A ) ) -> ( i : ( F " A ) -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) | 
						
							| 76 | 75 | 3ad2ant3 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( i : ( F " A ) -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) | 
						
							| 77 | 72 74 76 | 3anbi123d |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) <-> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) ) | 
						
							| 78 |  | simp3 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> i = ( _I |` ( F " A ) ) ) | 
						
							| 79 |  | simp2 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> h = ( y e. P |-> U. ( F " y ) ) ) | 
						
							| 80 | 78 79 | coeq12d |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( i o. h ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) | 
						
							| 81 |  | simp1 |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) | 
						
							| 82 | 80 81 | coeq12d |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( i o. h ) o. g ) = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) | 
						
							| 83 | 82 | eqeq2d |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( F = ( ( i o. h ) o. g ) <-> F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) | 
						
							| 84 | 77 83 | anbi12d |  |-  ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) <-> ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) ) | 
						
							| 85 | 84 | spc3egv |  |-  ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V /\ ( y e. P |-> U. ( F " y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V ) -> ( ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) -> E. g E. h E. i ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) ) ) | 
						
							| 86 | 11 70 85 | sylc |  |-  ( ( F : A --> B /\ A e. V ) -> E. g E. h E. i ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) ) |