| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
| 2 |
|
simpr |
|- ( ( F : A --> B /\ A e. V ) -> A e. V ) |
| 3 |
2
|
mptexd |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V ) |
| 4 |
1
|
setpreimafvex |
|- ( A e. V -> P e. _V ) |
| 5 |
4
|
adantl |
|- ( ( F : A --> B /\ A e. V ) -> P e. _V ) |
| 6 |
5
|
mptexd |
|- ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) e. _V ) |
| 7 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
| 8 |
|
funimaexg |
|- ( ( Fun F /\ A e. V ) -> ( F " A ) e. _V ) |
| 9 |
7 8
|
sylan |
|- ( ( F : A --> B /\ A e. V ) -> ( F " A ) e. _V ) |
| 10 |
9
|
resiexd |
|- ( ( F : A --> B /\ A e. V ) -> ( _I |` ( F " A ) ) e. _V ) |
| 11 |
3 6 10
|
3jca |
|- ( ( F : A --> B /\ A e. V ) -> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V /\ ( y e. P |-> U. ( F " y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V ) ) |
| 12 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 13 |
|
fveq2 |
|- ( a = x -> ( F ` a ) = ( F ` x ) ) |
| 14 |
13
|
sneqd |
|- ( a = x -> { ( F ` a ) } = { ( F ` x ) } ) |
| 15 |
14
|
imaeq2d |
|- ( a = x -> ( `' F " { ( F ` a ) } ) = ( `' F " { ( F ` x ) } ) ) |
| 16 |
15
|
cbvmptv |
|- ( a e. A |-> ( `' F " { ( F ` a ) } ) ) = ( x e. A |-> ( `' F " { ( F ` x ) } ) ) |
| 17 |
1 16
|
fundcmpsurinjlem2 |
|- ( ( F Fn A /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) |
| 18 |
12 17
|
sylan |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) |
| 19 |
|
eqid |
|- ( y e. P |-> U. ( F " y ) ) = ( y e. P |-> U. ( F " y ) ) |
| 20 |
1 19
|
imasetpreimafvbij |
|- ( ( F Fn A /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) |
| 21 |
12 20
|
sylan |
|- ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) |
| 22 |
|
f1oi |
|- ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) |
| 23 |
|
f1of1 |
|- ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) ) |
| 24 |
|
fimass |
|- ( F : A --> B -> ( F " A ) C_ B ) |
| 25 |
|
f1ss |
|- ( ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) /\ ( F " A ) C_ B ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) |
| 26 |
24 25
|
sylan2 |
|- ( ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) /\ F : A --> B ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) |
| 27 |
26
|
ex |
|- ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-> ( F " A ) -> ( F : A --> B -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
| 28 |
22 23 27
|
mp2b |
|- ( F : A --> B -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) |
| 29 |
28
|
adantr |
|- ( ( F : A --> B /\ A e. V ) -> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) |
| 30 |
18 21 29
|
3jca |
|- ( ( F : A --> B /\ A e. V ) -> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
| 31 |
12
|
adantr |
|- ( ( F : A --> B /\ A e. V ) -> F Fn A ) |
| 32 |
|
uniimaprimaeqfv |
|- ( ( F Fn A /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) |
| 33 |
31 32
|
sylan |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) |
| 34 |
33
|
fveq2d |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) = ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) |
| 35 |
34
|
mpteq2dva |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) = ( a e. A |-> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) ) |
| 36 |
|
ffrn |
|- ( F : A --> B -> F : A --> ran F ) |
| 37 |
36
|
adantr |
|- ( ( F : A --> B /\ A e. V ) -> F : A --> ran F ) |
| 38 |
37
|
funfvima2d |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( F ` a ) e. ( F " A ) ) |
| 39 |
|
fvresi |
|- ( ( F ` a ) e. ( F " A ) -> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) = ( F ` a ) ) |
| 40 |
38 39
|
syl |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) = ( F ` a ) ) |
| 41 |
40
|
mpteq2dva |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` ( F ` a ) ) ) = ( a e. A |-> ( F ` a ) ) ) |
| 42 |
35 41
|
eqtrd |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) = ( a e. A |-> ( F ` a ) ) ) |
| 43 |
12
|
ad2antrr |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> F Fn A ) |
| 44 |
2
|
adantr |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> A e. V ) |
| 45 |
|
simpr |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> a e. A ) |
| 46 |
1
|
preimafvelsetpreimafv |
|- ( ( F Fn A /\ A e. V /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) |
| 47 |
43 44 45 46
|
syl3anc |
|- ( ( ( F : A --> B /\ A e. V ) /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) |
| 48 |
|
eqidd |
|- ( ( F : A --> B /\ A e. V ) -> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) |
| 49 |
|
eqidd |
|- ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) ) |
| 50 |
|
imaeq2 |
|- ( y = ( `' F " { ( F ` a ) } ) -> ( F " y ) = ( F " ( `' F " { ( F ` a ) } ) ) ) |
| 51 |
50
|
unieqd |
|- ( y = ( `' F " { ( F ` a ) } ) -> U. ( F " y ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) |
| 52 |
51
|
fveq2d |
|- ( y = ( `' F " { ( F ` a ) } ) -> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) = ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) |
| 53 |
47 48 49 52
|
fmptco |
|- ( ( F : A --> B /\ A e. V ) -> ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) = ( a e. A |-> ( ( _I |` ( F " A ) ) ` U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) ) |
| 54 |
|
dffn5 |
|- ( F Fn A <-> F = ( a e. A |-> ( F ` a ) ) ) |
| 55 |
12 54
|
sylib |
|- ( F : A --> B -> F = ( a e. A |-> ( F ` a ) ) ) |
| 56 |
55
|
adantr |
|- ( ( F : A --> B /\ A e. V ) -> F = ( a e. A |-> ( F ` a ) ) ) |
| 57 |
42 53 56
|
3eqtr4rd |
|- ( ( F : A --> B /\ A e. V ) -> F = ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) |
| 58 |
|
f1of |
|- ( ( _I |` ( F " A ) ) : ( F " A ) -1-1-onto-> ( F " A ) -> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) |
| 59 |
22 58
|
mp1i |
|- ( F Fn A -> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) |
| 60 |
|
fnima |
|- ( F Fn A -> ( F " A ) = ran F ) |
| 61 |
60
|
eqcomd |
|- ( F Fn A -> ran F = ( F " A ) ) |
| 62 |
61
|
feq2d |
|- ( F Fn A -> ( ( _I |` ( F " A ) ) : ran F --> ( F " A ) <-> ( _I |` ( F " A ) ) : ( F " A ) --> ( F " A ) ) ) |
| 63 |
59 62
|
mpbird |
|- ( F Fn A -> ( _I |` ( F " A ) ) : ran F --> ( F " A ) ) |
| 64 |
1
|
uniimaelsetpreimafv |
|- ( ( F Fn A /\ y e. P ) -> U. ( F " y ) e. ran F ) |
| 65 |
63 64
|
cofmpt |
|- ( F Fn A -> ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) = ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) ) |
| 66 |
65
|
eqcomd |
|- ( F Fn A -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) |
| 67 |
31 66
|
syl |
|- ( ( F : A --> B /\ A e. V ) -> ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) |
| 68 |
67
|
coeq1d |
|- ( ( F : A --> B /\ A e. V ) -> ( ( y e. P |-> ( ( _I |` ( F " A ) ) ` U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) |
| 69 |
57 68
|
eqtrd |
|- ( ( F : A --> B /\ A e. V ) -> F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) |
| 70 |
30 69
|
jca |
|- ( ( F : A --> B /\ A e. V ) -> ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) |
| 71 |
|
foeq1 |
|- ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) -> ( g : A -onto-> P <-> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( g : A -onto-> P <-> ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P ) ) |
| 73 |
|
f1oeq1 |
|- ( h = ( y e. P |-> U. ( F " y ) ) -> ( h : P -1-1-onto-> ( F " A ) <-> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) ) |
| 74 |
73
|
3ad2ant2 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( h : P -1-1-onto-> ( F " A ) <-> ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) ) ) |
| 75 |
|
f1eq1 |
|- ( i = ( _I |` ( F " A ) ) -> ( i : ( F " A ) -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
| 76 |
75
|
3ad2ant3 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( i : ( F " A ) -1-1-> B <-> ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) |
| 77 |
72 74 76
|
3anbi123d |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) <-> ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) ) ) |
| 78 |
|
simp3 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> i = ( _I |` ( F " A ) ) ) |
| 79 |
|
simp2 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> h = ( y e. P |-> U. ( F " y ) ) ) |
| 80 |
78 79
|
coeq12d |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( i o. h ) = ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) ) |
| 81 |
|
simp1 |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) |
| 82 |
80 81
|
coeq12d |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( i o. h ) o. g ) = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) |
| 83 |
82
|
eqeq2d |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( F = ( ( i o. h ) o. g ) <-> F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) |
| 84 |
77 83
|
anbi12d |
|- ( ( g = ( a e. A |-> ( `' F " { ( F ` a ) } ) ) /\ h = ( y e. P |-> U. ( F " y ) ) /\ i = ( _I |` ( F " A ) ) ) -> ( ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) <-> ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) ) ) |
| 85 |
84
|
spc3egv |
|- ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) e. _V /\ ( y e. P |-> U. ( F " y ) ) e. _V /\ ( _I |` ( F " A ) ) e. _V ) -> ( ( ( ( a e. A |-> ( `' F " { ( F ` a ) } ) ) : A -onto-> P /\ ( y e. P |-> U. ( F " y ) ) : P -1-1-onto-> ( F " A ) /\ ( _I |` ( F " A ) ) : ( F " A ) -1-1-> B ) /\ F = ( ( ( _I |` ( F " A ) ) o. ( y e. P |-> U. ( F " y ) ) ) o. ( a e. A |-> ( `' F " { ( F ` a ) } ) ) ) ) -> E. g E. h E. i ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) ) ) |
| 86 |
11 70 85
|
sylc |
|- ( ( F : A --> B /\ A e. V ) -> E. g E. h E. i ( ( g : A -onto-> P /\ h : P -1-1-onto-> ( F " A ) /\ i : ( F " A ) -1-1-> B ) /\ F = ( ( i o. h ) o. g ) ) ) |