| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h |  |-  H = ( p e. P |-> U. ( F " p ) ) | 
						
							| 3 | 1 2 | imasetpreimafvbijlemf1 |  |-  ( F Fn A -> H : P -1-1-> ( F " A ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F Fn A /\ A e. V ) -> H : P -1-1-> ( F " A ) ) | 
						
							| 5 | 1 2 | imasetpreimafvbijlemfo |  |-  ( ( F Fn A /\ A e. V ) -> H : P -onto-> ( F " A ) ) | 
						
							| 6 |  | df-f1o |  |-  ( H : P -1-1-onto-> ( F " A ) <-> ( H : P -1-1-> ( F " A ) /\ H : P -onto-> ( F " A ) ) ) | 
						
							| 7 | 4 5 6 | sylanbrc |  |-  ( ( F Fn A /\ A e. V ) -> H : P -1-1-onto-> ( F " A ) ) |