| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
| 2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
| 3 |
1 2
|
imasetpreimafvbijlemf1 |
|- ( F Fn A -> H : P -1-1-> ( F " A ) ) |
| 4 |
3
|
adantr |
|- ( ( F Fn A /\ A e. V ) -> H : P -1-1-> ( F " A ) ) |
| 5 |
1 2
|
imasetpreimafvbijlemfo |
|- ( ( F Fn A /\ A e. V ) -> H : P -onto-> ( F " A ) ) |
| 6 |
|
df-f1o |
|- ( H : P -1-1-onto-> ( F " A ) <-> ( H : P -1-1-> ( F " A ) /\ H : P -onto-> ( F " A ) ) ) |
| 7 |
4 5 6
|
sylanbrc |
|- ( ( F Fn A /\ A e. V ) -> H : P -1-1-onto-> ( F " A ) ) |