Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
3 |
1 2
|
imasetpreimafvbijlemf1 |
|- ( F Fn A -> H : P -1-1-> ( F " A ) ) |
4 |
3
|
adantr |
|- ( ( F Fn A /\ A e. V ) -> H : P -1-1-> ( F " A ) ) |
5 |
1 2
|
imasetpreimafvbijlemfo |
|- ( ( F Fn A /\ A e. V ) -> H : P -onto-> ( F " A ) ) |
6 |
|
df-f1o |
|- ( H : P -1-1-onto-> ( F " A ) <-> ( H : P -1-1-> ( F " A ) /\ H : P -onto-> ( F " A ) ) ) |
7 |
4 5 6
|
sylanbrc |
|- ( ( F Fn A /\ A e. V ) -> H : P -1-1-onto-> ( F " A ) ) |