Metamath Proof Explorer


Theorem imasetpreimafvbij

Description: The mapping H is a bijective function betwen the set P of all preimages of values of function F and the range of F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.h
|- H = ( p e. P |-> U. ( F " p ) )
Assertion imasetpreimafvbij
|- ( ( F Fn A /\ A e. V ) -> H : P -1-1-onto-> ( F " A ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.h
 |-  H = ( p e. P |-> U. ( F " p ) )
3 1 2 imasetpreimafvbijlemf1
 |-  ( F Fn A -> H : P -1-1-> ( F " A ) )
4 3 adantr
 |-  ( ( F Fn A /\ A e. V ) -> H : P -1-1-> ( F " A ) )
5 1 2 imasetpreimafvbijlemfo
 |-  ( ( F Fn A /\ A e. V ) -> H : P -onto-> ( F " A ) )
6 df-f1o
 |-  ( H : P -1-1-onto-> ( F " A ) <-> ( H : P -1-1-> ( F " A ) /\ H : P -onto-> ( F " A ) ) )
7 4 5 6 sylanbrc
 |-  ( ( F Fn A /\ A e. V ) -> H : P -1-1-onto-> ( F " A ) )