Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
3 |
1 2
|
imasetpreimafvbijlemf |
|- ( F Fn A -> H : P --> ( F " A ) ) |
4 |
1 2
|
imasetpreimafvbijlemfv1 |
|- ( ( F Fn A /\ s e. P ) -> E. b e. s ( H ` s ) = ( F ` b ) ) |
5 |
1 2
|
imasetpreimafvbijlemfv1 |
|- ( ( F Fn A /\ r e. P ) -> E. a e. r ( H ` r ) = ( F ` a ) ) |
6 |
4 5
|
anim12dan |
|- ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( E. b e. s ( H ` s ) = ( F ` b ) /\ E. a e. r ( H ` r ) = ( F ` a ) ) ) |
7 |
|
eqeq12 |
|- ( ( ( H ` s ) = ( F ` b ) /\ ( H ` r ) = ( F ` a ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) |
8 |
7
|
ancoms |
|- ( ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) |
9 |
8
|
adantl |
|- ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) |
10 |
|
simplll |
|- ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> F Fn A ) |
11 |
|
simpllr |
|- ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( s e. P /\ r e. P ) ) |
12 |
|
simpr |
|- ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> b e. s ) |
13 |
12
|
anim1i |
|- ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( b e. s /\ a e. r ) ) |
14 |
1
|
elsetpreimafveq |
|- ( ( F Fn A /\ ( s e. P /\ r e. P ) /\ ( b e. s /\ a e. r ) ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) |
15 |
10 11 13 14
|
syl3anc |
|- ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) |
16 |
15
|
adantr |
|- ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) |
17 |
9 16
|
sylbid |
|- ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) |
18 |
17
|
exp32 |
|- ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( F ` b ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) |
19 |
18
|
rexlimdva |
|- ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( F ` b ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) |
20 |
19
|
com23 |
|- ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> ( ( H ` s ) = ( F ` b ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) |
21 |
20
|
rexlimdva |
|- ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( E. b e. s ( H ` s ) = ( F ` b ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) |
22 |
21
|
impd |
|- ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( ( E. b e. s ( H ` s ) = ( F ` b ) /\ E. a e. r ( H ` r ) = ( F ` a ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) |
23 |
6 22
|
mpd |
|- ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) |
24 |
23
|
ralrimivva |
|- ( F Fn A -> A. s e. P A. r e. P ( ( H ` s ) = ( H ` r ) -> s = r ) ) |
25 |
|
dff13 |
|- ( H : P -1-1-> ( F " A ) <-> ( H : P --> ( F " A ) /\ A. s e. P A. r e. P ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) |
26 |
3 24 25
|
sylanbrc |
|- ( F Fn A -> H : P -1-1-> ( F " A ) ) |