| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h |  |-  H = ( p e. P |-> U. ( F " p ) ) | 
						
							| 3 | 1 2 | imasetpreimafvbijlemf |  |-  ( F Fn A -> H : P --> ( F " A ) ) | 
						
							| 4 | 1 2 | imasetpreimafvbijlemfv1 |  |-  ( ( F Fn A /\ s e. P ) -> E. b e. s ( H ` s ) = ( F ` b ) ) | 
						
							| 5 | 1 2 | imasetpreimafvbijlemfv1 |  |-  ( ( F Fn A /\ r e. P ) -> E. a e. r ( H ` r ) = ( F ` a ) ) | 
						
							| 6 | 4 5 | anim12dan |  |-  ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( E. b e. s ( H ` s ) = ( F ` b ) /\ E. a e. r ( H ` r ) = ( F ` a ) ) ) | 
						
							| 7 |  | eqeq12 |  |-  ( ( ( H ` s ) = ( F ` b ) /\ ( H ` r ) = ( F ` a ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( H ` s ) = ( H ` r ) <-> ( F ` b ) = ( F ` a ) ) ) | 
						
							| 10 |  | simplll |  |-  ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> F Fn A ) | 
						
							| 11 |  | simpllr |  |-  ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( s e. P /\ r e. P ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> b e. s ) | 
						
							| 13 | 12 | anim1i |  |-  ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( b e. s /\ a e. r ) ) | 
						
							| 14 | 1 | elsetpreimafveq |  |-  ( ( F Fn A /\ ( s e. P /\ r e. P ) /\ ( b e. s /\ a e. r ) ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) | 
						
							| 15 | 10 11 13 14 | syl3anc |  |-  ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( F ` b ) = ( F ` a ) -> s = r ) ) | 
						
							| 17 | 9 16 | sylbid |  |-  ( ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) /\ ( ( H ` r ) = ( F ` a ) /\ ( H ` s ) = ( F ` b ) ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) | 
						
							| 18 | 17 | exp32 |  |-  ( ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) /\ a e. r ) -> ( ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( F ` b ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) | 
						
							| 19 | 18 | rexlimdva |  |-  ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( F ` b ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) | 
						
							| 20 | 19 | com23 |  |-  ( ( ( F Fn A /\ ( s e. P /\ r e. P ) ) /\ b e. s ) -> ( ( H ` s ) = ( F ` b ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) | 
						
							| 21 | 20 | rexlimdva |  |-  ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( E. b e. s ( H ` s ) = ( F ` b ) -> ( E. a e. r ( H ` r ) = ( F ` a ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) ) | 
						
							| 22 | 21 | impd |  |-  ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( ( E. b e. s ( H ` s ) = ( F ` b ) /\ E. a e. r ( H ` r ) = ( F ` a ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) | 
						
							| 23 | 6 22 | mpd |  |-  ( ( F Fn A /\ ( s e. P /\ r e. P ) ) -> ( ( H ` s ) = ( H ` r ) -> s = r ) ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( F Fn A -> A. s e. P A. r e. P ( ( H ` s ) = ( H ` r ) -> s = r ) ) | 
						
							| 25 |  | dff13 |  |-  ( H : P -1-1-> ( F " A ) <-> ( H : P --> ( F " A ) /\ A. s e. P A. r e. P ( ( H ` s ) = ( H ` r ) -> s = r ) ) ) | 
						
							| 26 | 3 24 25 | sylanbrc |  |-  ( F Fn A -> H : P -1-1-> ( F " A ) ) |