Metamath Proof Explorer


Theorem imasetpreimafvbijlemfv1

Description: Lemma for imasetpreimafvbij : for a preimage of a value of function F there is an element of the preimage so that the value of the mapping H at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.h
|- H = ( p e. P |-> U. ( F " p ) )
Assertion imasetpreimafvbijlemfv1
|- ( ( F Fn A /\ X e. P ) -> E. y e. X ( H ` X ) = ( F ` y ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.h
 |-  H = ( p e. P |-> U. ( F " p ) )
3 1 0nelsetpreimafv
 |-  ( F Fn A -> (/) e/ P )
4 elnelne2
 |-  ( ( X e. P /\ (/) e/ P ) -> X =/= (/) )
5 4 expcom
 |-  ( (/) e/ P -> ( X e. P -> X =/= (/) ) )
6 3 5 syl
 |-  ( F Fn A -> ( X e. P -> X =/= (/) ) )
7 6 imp
 |-  ( ( F Fn A /\ X e. P ) -> X =/= (/) )
8 simpr
 |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> y e. X )
9 1 2 imasetpreimafvbijlemfv
 |-  ( ( F Fn A /\ X e. P /\ y e. X ) -> ( H ` X ) = ( F ` y ) )
10 9 3expa
 |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( H ` X ) = ( F ` y ) )
11 8 10 jca
 |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) )
12 11 ex
 |-  ( ( F Fn A /\ X e. P ) -> ( y e. X -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) )
13 12 eximdv
 |-  ( ( F Fn A /\ X e. P ) -> ( E. y y e. X -> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) )
14 n0
 |-  ( X =/= (/) <-> E. y y e. X )
15 df-rex
 |-  ( E. y e. X ( H ` X ) = ( F ` y ) <-> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) )
16 13 14 15 3imtr4g
 |-  ( ( F Fn A /\ X e. P ) -> ( X =/= (/) -> E. y e. X ( H ` X ) = ( F ` y ) ) )
17 7 16 mpd
 |-  ( ( F Fn A /\ X e. P ) -> E. y e. X ( H ` X ) = ( F ` y ) )