| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h |  |-  H = ( p e. P |-> U. ( F " p ) ) | 
						
							| 3 | 1 | 0nelsetpreimafv |  |-  ( F Fn A -> (/) e/ P ) | 
						
							| 4 |  | elnelne2 |  |-  ( ( X e. P /\ (/) e/ P ) -> X =/= (/) ) | 
						
							| 5 | 4 | expcom |  |-  ( (/) e/ P -> ( X e. P -> X =/= (/) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( F Fn A -> ( X e. P -> X =/= (/) ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( F Fn A /\ X e. P ) -> X =/= (/) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> y e. X ) | 
						
							| 9 | 1 2 | imasetpreimafvbijlemfv |  |-  ( ( F Fn A /\ X e. P /\ y e. X ) -> ( H ` X ) = ( F ` y ) ) | 
						
							| 10 | 9 | 3expa |  |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( H ` X ) = ( F ` y ) ) | 
						
							| 11 | 8 10 | jca |  |-  ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) | 
						
							| 12 | 11 | ex |  |-  ( ( F Fn A /\ X e. P ) -> ( y e. X -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) ) | 
						
							| 13 | 12 | eximdv |  |-  ( ( F Fn A /\ X e. P ) -> ( E. y y e. X -> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) ) | 
						
							| 14 |  | n0 |  |-  ( X =/= (/) <-> E. y y e. X ) | 
						
							| 15 |  | df-rex |  |-  ( E. y e. X ( H ` X ) = ( F ` y ) <-> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) | 
						
							| 16 | 13 14 15 | 3imtr4g |  |-  ( ( F Fn A /\ X e. P ) -> ( X =/= (/) -> E. y e. X ( H ` X ) = ( F ` y ) ) ) | 
						
							| 17 | 7 16 | mpd |  |-  ( ( F Fn A /\ X e. P ) -> E. y e. X ( H ` X ) = ( F ` y ) ) |