Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
3 |
1
|
0nelsetpreimafv |
|- ( F Fn A -> (/) e/ P ) |
4 |
|
elnelne2 |
|- ( ( X e. P /\ (/) e/ P ) -> X =/= (/) ) |
5 |
4
|
expcom |
|- ( (/) e/ P -> ( X e. P -> X =/= (/) ) ) |
6 |
3 5
|
syl |
|- ( F Fn A -> ( X e. P -> X =/= (/) ) ) |
7 |
6
|
imp |
|- ( ( F Fn A /\ X e. P ) -> X =/= (/) ) |
8 |
|
simpr |
|- ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> y e. X ) |
9 |
1 2
|
imasetpreimafvbijlemfv |
|- ( ( F Fn A /\ X e. P /\ y e. X ) -> ( H ` X ) = ( F ` y ) ) |
10 |
9
|
3expa |
|- ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( H ` X ) = ( F ` y ) ) |
11 |
8 10
|
jca |
|- ( ( ( F Fn A /\ X e. P ) /\ y e. X ) -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) |
12 |
11
|
ex |
|- ( ( F Fn A /\ X e. P ) -> ( y e. X -> ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) ) |
13 |
12
|
eximdv |
|- ( ( F Fn A /\ X e. P ) -> ( E. y y e. X -> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) ) |
14 |
|
n0 |
|- ( X =/= (/) <-> E. y y e. X ) |
15 |
|
df-rex |
|- ( E. y e. X ( H ` X ) = ( F ` y ) <-> E. y ( y e. X /\ ( H ` X ) = ( F ` y ) ) ) |
16 |
13 14 15
|
3imtr4g |
|- ( ( F Fn A /\ X e. P ) -> ( X =/= (/) -> E. y e. X ( H ` X ) = ( F ` y ) ) ) |
17 |
7 16
|
mpd |
|- ( ( F Fn A /\ X e. P ) -> E. y e. X ( H ` X ) = ( F ` y ) ) |