Metamath Proof Explorer


Theorem imasetpreimafvbijlemfv1

Description: Lemma for imasetpreimafvbij : for a preimage of a value of function F there is an element of the preimage so that the value of the mapping H at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion imasetpreimafvbijlemfv1 F Fn A X P y X H X = F y

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 1 0nelsetpreimafv F Fn A P
4 elnelne2 X P P X
5 4 expcom P X P X
6 3 5 syl F Fn A X P X
7 6 imp F Fn A X P X
8 simpr F Fn A X P y X y X
9 1 2 imasetpreimafvbijlemfv F Fn A X P y X H X = F y
10 9 3expa F Fn A X P y X H X = F y
11 8 10 jca F Fn A X P y X y X H X = F y
12 11 ex F Fn A X P y X y X H X = F y
13 12 eximdv F Fn A X P y y X y y X H X = F y
14 n0 X y y X
15 df-rex y X H X = F y y y X H X = F y
16 13 14 15 3imtr4g F Fn A X P X y X H X = F y
17 7 16 mpd F Fn A X P y X H X = F y