Metamath Proof Explorer


Theorem imasetpreimafvbijlemfv1

Description: Lemma for imasetpreimafvbij : for a preimage of a value of function F there is an element of the preimage so that the value of the mapping H at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P=z|xAz=F-1Fx
fundcmpsurinj.h H=pPFp
Assertion imasetpreimafvbijlemfv1 FFnAXPyXHX=Fy

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 fundcmpsurinj.h H=pPFp
3 1 0nelsetpreimafv FFnAP
4 elnelne2 XPPX
5 4 expcom PXPX
6 3 5 syl FFnAXPX
7 6 imp FFnAXPX
8 simpr FFnAXPyXyX
9 1 2 imasetpreimafvbijlemfv FFnAXPyXHX=Fy
10 9 3expa FFnAXPyXHX=Fy
11 8 10 jca FFnAXPyXyXHX=Fy
12 11 ex FFnAXPyXyXHX=Fy
13 12 eximdv FFnAXPyyXyyXHX=Fy
14 n0 XyyX
15 df-rex yXHX=FyyyXHX=Fy
16 13 14 15 3imtr4g FFnAXPXyXHX=Fy
17 7 16 mpd FFnAXPyXHX=Fy