Metamath Proof Explorer


Theorem imasetpreimafvbij

Description: The mapping H is a bijective function betwen the set P of all preimages of values of function F and the range of F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P=z|xAz=F-1Fx
fundcmpsurinj.h H=pPFp
Assertion imasetpreimafvbij FFnAAVH:P1-1 ontoFA

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 fundcmpsurinj.h H=pPFp
3 1 2 imasetpreimafvbijlemf1 FFnAH:P1-1FA
4 3 adantr FFnAAVH:P1-1FA
5 1 2 imasetpreimafvbijlemfo FFnAAVH:PontoFA
6 df-f1o H:P1-1 ontoFAH:P1-1FAH:PontoFA
7 4 5 6 sylanbrc FFnAAVH:P1-1 ontoFA