Metamath Proof Explorer


Theorem imasetpreimafvbij

Description: The mapping H is a bijective function betwen the set P of all preimages of values of function F and the range of F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion imasetpreimafvbij F Fn A A V H : P 1-1 onto F A

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 1 2 imasetpreimafvbijlemf1 F Fn A H : P 1-1 F A
4 3 adantr F Fn A A V H : P 1-1 F A
5 1 2 imasetpreimafvbijlemfo F Fn A A V H : P onto F A
6 df-f1o H : P 1-1 onto F A H : P 1-1 F A H : P onto F A
7 4 5 6 sylanbrc F Fn A A V H : P 1-1 onto F A