Metamath Proof Explorer


Theorem imasetpreimafvbijlemf1

Description: Lemma for imasetpreimafvbij : the mapping H is an injective function into the range of function F . (Contributed by AV, 9-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P=z|xAz=F-1Fx
fundcmpsurinj.h H=pPFp
Assertion imasetpreimafvbijlemf1 FFnAH:P1-1FA

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 fundcmpsurinj.h H=pPFp
3 1 2 imasetpreimafvbijlemf FFnAH:PFA
4 1 2 imasetpreimafvbijlemfv1 FFnAsPbsHs=Fb
5 1 2 imasetpreimafvbijlemfv1 FFnArParHr=Fa
6 4 5 anim12dan FFnAsPrPbsHs=FbarHr=Fa
7 eqeq12 Hs=FbHr=FaHs=HrFb=Fa
8 7 ancoms Hr=FaHs=FbHs=HrFb=Fa
9 8 adantl FFnAsPrPbsarHr=FaHs=FbHs=HrFb=Fa
10 simplll FFnAsPrPbsarFFnA
11 simpllr FFnAsPrPbsarsPrP
12 simpr FFnAsPrPbsbs
13 12 anim1i FFnAsPrPbsarbsar
14 1 elsetpreimafveq FFnAsPrPbsarFb=Fas=r
15 10 11 13 14 syl3anc FFnAsPrPbsarFb=Fas=r
16 15 adantr FFnAsPrPbsarHr=FaHs=FbFb=Fas=r
17 9 16 sylbid FFnAsPrPbsarHr=FaHs=FbHs=Hrs=r
18 17 exp32 FFnAsPrPbsarHr=FaHs=FbHs=Hrs=r
19 18 rexlimdva FFnAsPrPbsarHr=FaHs=FbHs=Hrs=r
20 19 com23 FFnAsPrPbsHs=FbarHr=FaHs=Hrs=r
21 20 rexlimdva FFnAsPrPbsHs=FbarHr=FaHs=Hrs=r
22 21 impd FFnAsPrPbsHs=FbarHr=FaHs=Hrs=r
23 6 22 mpd FFnAsPrPHs=Hrs=r
24 23 ralrimivva FFnAsPrPHs=Hrs=r
25 dff13 H:P1-1FAH:PFAsPrPHs=Hrs=r
26 3 24 25 sylanbrc FFnAH:P1-1FA