Description: Lemma for imasetpreimafvbij : the mapping H is an injective function into the range of function F . (Contributed by AV, 9-Mar-2024) (Revised by AV, 22-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fundcmpsurinj.p | |
|
fundcmpsurinj.h | |
||
Assertion | imasetpreimafvbijlemf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | |
|
2 | fundcmpsurinj.h | |
|
3 | 1 2 | imasetpreimafvbijlemf | |
4 | 1 2 | imasetpreimafvbijlemfv1 | |
5 | 1 2 | imasetpreimafvbijlemfv1 | |
6 | 4 5 | anim12dan | |
7 | eqeq12 | |
|
8 | 7 | ancoms | |
9 | 8 | adantl | |
10 | simplll | |
|
11 | simpllr | |
|
12 | simpr | |
|
13 | 12 | anim1i | |
14 | 1 | elsetpreimafveq | |
15 | 10 11 13 14 | syl3anc | |
16 | 15 | adantr | |
17 | 9 16 | sylbid | |
18 | 17 | exp32 | |
19 | 18 | rexlimdva | |
20 | 19 | com23 | |
21 | 20 | rexlimdva | |
22 | 21 | impd | |
23 | 6 22 | mpd | |
24 | 23 | ralrimivva | |
25 | dff13 | |
|
26 | 3 24 25 | sylanbrc | |