Metamath Proof Explorer


Theorem imasetpreimafvbijlemf1

Description: Lemma for imasetpreimafvbij : the mapping H is an injective function into the range of function F . (Contributed by AV, 9-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
Assertion imasetpreimafvbijlemf1 ( 𝐹 Fn 𝐴𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
3 1 2 imasetpreimafvbijlemf ( 𝐹 Fn 𝐴𝐻 : 𝑃 ⟶ ( 𝐹𝐴 ) )
4 1 2 imasetpreimafvbijlemfv1 ( ( 𝐹 Fn 𝐴𝑠𝑃 ) → ∃ 𝑏𝑠 ( 𝐻𝑠 ) = ( 𝐹𝑏 ) )
5 1 2 imasetpreimafvbijlemfv1 ( ( 𝐹 Fn 𝐴𝑟𝑃 ) → ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) )
6 4 5 anim12dan ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) → ( ∃ 𝑏𝑠 ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ∧ ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ) )
7 eqeq12 ( ( ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ∧ ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) ↔ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) )
8 7 ancoms ( ( ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ∧ ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) ↔ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) )
9 8 adantl ( ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) ∧ ( ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ∧ ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) ↔ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) )
10 simplll ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) → 𝐹 Fn 𝐴 )
11 simpllr ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) → ( 𝑠𝑃𝑟𝑃 ) )
12 simpr ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) → 𝑏𝑠 )
13 12 anim1i ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) → ( 𝑏𝑠𝑎𝑟 ) )
14 1 elsetpreimafveq ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ∧ ( 𝑏𝑠𝑎𝑟 ) ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑠 = 𝑟 ) )
15 10 11 13 14 syl3anc ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑠 = 𝑟 ) )
16 15 adantr ( ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) ∧ ( ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ∧ ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ) ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑠 = 𝑟 ) )
17 9 16 sylbid ( ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) ∧ ( ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ∧ ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) )
18 17 exp32 ( ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) ∧ 𝑎𝑟 ) → ( ( 𝐻𝑟 ) = ( 𝐹𝑎 ) → ( ( 𝐻𝑠 ) = ( 𝐹𝑏 ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) ) )
19 18 rexlimdva ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) → ( ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) → ( ( 𝐻𝑠 ) = ( 𝐹𝑏 ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) ) )
20 19 com23 ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) ∧ 𝑏𝑠 ) → ( ( 𝐻𝑠 ) = ( 𝐹𝑏 ) → ( ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) ) )
21 20 rexlimdva ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) → ( ∃ 𝑏𝑠 ( 𝐻𝑠 ) = ( 𝐹𝑏 ) → ( ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) ) )
22 21 impd ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) → ( ( ∃ 𝑏𝑠 ( 𝐻𝑠 ) = ( 𝐹𝑏 ) ∧ ∃ 𝑎𝑟 ( 𝐻𝑟 ) = ( 𝐹𝑎 ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) )
23 6 22 mpd ( ( 𝐹 Fn 𝐴 ∧ ( 𝑠𝑃𝑟𝑃 ) ) → ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) )
24 23 ralrimivva ( 𝐹 Fn 𝐴 → ∀ 𝑠𝑃𝑟𝑃 ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) )
25 dff13 ( 𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) ↔ ( 𝐻 : 𝑃 ⟶ ( 𝐹𝐴 ) ∧ ∀ 𝑠𝑃𝑟𝑃 ( ( 𝐻𝑠 ) = ( 𝐻𝑟 ) → 𝑠 = 𝑟 ) ) )
26 3 24 25 sylanbrc ( 𝐹 Fn 𝐴𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) )