Metamath Proof Explorer


Theorem imasetpreimafvbijlemf

Description: Lemma for imasetpreimafvbij : the mapping H is a function into the range of function F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
Assertion imasetpreimafvbijlemf ( 𝐹 Fn 𝐴𝐻 : 𝑃 ⟶ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
3 1 uniimaelsetpreimafv ( ( 𝐹 Fn 𝐴𝑝𝑃 ) → ( 𝐹𝑝 ) ∈ ran 𝐹 )
4 fnima ( 𝐹 Fn 𝐴 → ( 𝐹𝐴 ) = ran 𝐹 )
5 4 adantr ( ( 𝐹 Fn 𝐴𝑝𝑃 ) → ( 𝐹𝐴 ) = ran 𝐹 )
6 3 5 eleqtrrd ( ( 𝐹 Fn 𝐴𝑝𝑃 ) → ( 𝐹𝑝 ) ∈ ( 𝐹𝐴 ) )
7 6 2 fmptd ( 𝐹 Fn 𝐴𝐻 : 𝑃 ⟶ ( 𝐹𝐴 ) )