Metamath Proof Explorer


Theorem imasetpreimafvbijlemfv

Description: Lemma for imasetpreimafvbij : the value of the mapping H at a preimage of a value of function F . (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
Assertion imasetpreimafvbijlemfv ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → ( 𝐻𝑌 ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
3 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
4 3 anim1i ( ( 𝐹 Fn 𝐴𝑌𝑃 ) → ( Fun 𝐹𝑌𝑃 ) )
5 4 3adant3 ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → ( Fun 𝐹𝑌𝑃 ) )
6 1 2 fundcmpsurinjlem3 ( ( Fun 𝐹𝑌𝑃 ) → ( 𝐻𝑌 ) = ( 𝐹𝑌 ) )
7 5 6 syl ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → ( 𝐻𝑌 ) = ( 𝐹𝑌 ) )
8 3 3ad2ant1 ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → Fun 𝐹 )
9 funiunfv ( Fun 𝐹 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
10 8 9 syl ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
11 simp3 ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → 𝑋𝑌 )
12 simpl1 ( ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) ∧ 𝑦𝑌 ) → 𝐹 Fn 𝐴 )
13 simpl2 ( ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) ∧ 𝑦𝑌 ) → 𝑌𝑃 )
14 simpr ( ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) ∧ 𝑦𝑌 ) → 𝑦𝑌 )
15 simpl3 ( ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) ∧ 𝑦𝑌 ) → 𝑋𝑌 )
16 1 elsetpreimafveqfv ( ( 𝐹 Fn 𝐴 ∧ ( 𝑌𝑃𝑦𝑌𝑋𝑌 ) ) → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
17 12 13 14 15 16 syl13anc ( ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) ∧ 𝑦𝑌 ) → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
18 17 ralrimiva ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → ∀ 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
19 fveq2 ( 𝑦 = 𝑋 → ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
20 19 iuneqconst ( ( 𝑋𝑌 ∧ ∀ 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) ) → 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
21 11 18 20 syl2anc ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → 𝑦𝑌 ( 𝐹𝑦 ) = ( 𝐹𝑋 ) )
22 7 10 21 3eqtr2d ( ( 𝐹 Fn 𝐴𝑌𝑃𝑋𝑌 ) → ( 𝐻𝑌 ) = ( 𝐹𝑋 ) )