| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iuneqconst.p | ⊢ ( 𝑥  =  𝑋  →  𝐵  =  𝐶 ) | 
						
							| 2 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 3 | 1 | eleq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 4 | 3 | rspcev | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 5 | 4 | adantlr | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 6 | 5 | ex | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ( 𝑦  ∈  𝐶  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑥 𝑋  ∈  𝐴 | 
						
							| 8 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐶 | 
						
							| 11 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ( 𝑥  ∈  𝐴  →  𝐵  =  𝐶 ) ) | 
						
							| 12 |  | eleq2 | ⊢ ( 𝐵  =  𝐶  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( 𝐵  =  𝐶  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 14 | 11 13 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) ) | 
						
							| 16 | 9 10 15 | rexlimd | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 17 | 6 16 | impbid | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ( 𝑦  ∈  𝐶  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 18 | 2 17 | bitr4id | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 19 | 18 | eqrdv | ⊢ ( ( 𝑋  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶 )  →  ∪  𝑥  ∈  𝐴 𝐵  =  𝐶 ) |