Metamath Proof Explorer


Theorem iuneqconst

Description: Indexed union of identical classes. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis iuneqconst.p ( 𝑥 = 𝑋𝐵 = 𝐶 )
Assertion iuneqconst ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝑥𝐴 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 iuneqconst.p ( 𝑥 = 𝑋𝐵 = 𝐶 )
2 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
3 1 eleq2d ( 𝑥 = 𝑋 → ( 𝑦𝐵𝑦𝐶 ) )
4 3 rspcev ( ( 𝑋𝐴𝑦𝐶 ) → ∃ 𝑥𝐴 𝑦𝐵 )
5 4 adantlr ( ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) ∧ 𝑦𝐶 ) → ∃ 𝑥𝐴 𝑦𝐵 )
6 5 ex ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( 𝑦𝐶 → ∃ 𝑥𝐴 𝑦𝐵 ) )
7 nfv 𝑥 𝑋𝐴
8 nfra1 𝑥𝑥𝐴 𝐵 = 𝐶
9 7 8 nfan 𝑥 ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 )
10 nfv 𝑥 𝑦𝐶
11 rsp ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( 𝑥𝐴𝐵 = 𝐶 ) )
12 eleq2 ( 𝐵 = 𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
13 12 biimpd ( 𝐵 = 𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
14 11 13 syl6 ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( 𝑥𝐴 → ( 𝑦𝐵𝑦𝐶 ) ) )
15 14 adantl ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( 𝑥𝐴 → ( 𝑦𝐵𝑦𝐶 ) ) )
16 9 10 15 rexlimd ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
17 6 16 impbid ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( 𝑦𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐵 ) )
18 2 17 bitr4id ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
19 18 eqrdv ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝑥𝐴 𝐵 = 𝐶 )