Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
fundcmpsurinj.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑝 ) ) |
3 |
2
|
a1i |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) → 𝐻 = ( 𝑝 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑝 ) ) ) |
4 |
|
imaeq2 |
⊢ ( 𝑝 = 𝑋 → ( 𝐹 “ 𝑝 ) = ( 𝐹 “ 𝑋 ) ) |
5 |
4
|
unieqd |
⊢ ( 𝑝 = 𝑋 → ∪ ( 𝐹 “ 𝑝 ) = ∪ ( 𝐹 “ 𝑋 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) ∧ 𝑝 = 𝑋 ) → ∪ ( 𝐹 “ 𝑝 ) = ∪ ( 𝐹 “ 𝑋 ) ) |
7 |
|
simpr |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) → 𝑋 ∈ 𝑃 ) |
8 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) → ( 𝐹 “ 𝑋 ) ∈ V ) |
9 |
8
|
uniexd |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) → ∪ ( 𝐹 “ 𝑋 ) ∈ V ) |
10 |
3 6 7 9
|
fvmptd |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ 𝑃 ) → ( 𝐻 ‘ 𝑋 ) = ∪ ( 𝐹 “ 𝑋 ) ) |