Metamath Proof Explorer


Theorem fundcmpsurinjlem3

Description: Lemma 3 for fundcmpsurinj . (Contributed by AV, 3-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
Assertion fundcmpsurinjlem3 ( ( Fun 𝐹𝑋𝑃 ) → ( 𝐻𝑋 ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
3 2 a1i ( ( Fun 𝐹𝑋𝑃 ) → 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) ) )
4 imaeq2 ( 𝑝 = 𝑋 → ( 𝐹𝑝 ) = ( 𝐹𝑋 ) )
5 4 unieqd ( 𝑝 = 𝑋 ( 𝐹𝑝 ) = ( 𝐹𝑋 ) )
6 5 adantl ( ( ( Fun 𝐹𝑋𝑃 ) ∧ 𝑝 = 𝑋 ) → ( 𝐹𝑝 ) = ( 𝐹𝑋 ) )
7 simpr ( ( Fun 𝐹𝑋𝑃 ) → 𝑋𝑃 )
8 funimaexg ( ( Fun 𝐹𝑋𝑃 ) → ( 𝐹𝑋 ) ∈ V )
9 8 uniexd ( ( Fun 𝐹𝑋𝑃 ) → ( 𝐹𝑋 ) ∈ V )
10 3 6 7 9 fvmptd ( ( Fun 𝐹𝑋𝑃 ) → ( 𝐻𝑋 ) = ( 𝐹𝑋 ) )