| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h | ⊢ 𝐻  =  ( 𝑝  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑝 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  →  𝐻  =  ( 𝑝  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑝 ) ) ) | 
						
							| 4 |  | imaeq2 | ⊢ ( 𝑝  =  𝑋  →  ( 𝐹  “  𝑝 )  =  ( 𝐹  “  𝑋 ) ) | 
						
							| 5 | 4 | unieqd | ⊢ ( 𝑝  =  𝑋  →  ∪  ( 𝐹  “  𝑝 )  =  ∪  ( 𝐹  “  𝑋 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  =  𝑋 )  →  ∪  ( 𝐹  “  𝑝 )  =  ∪  ( 𝐹  “  𝑋 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  →  𝑋  ∈  𝑃 ) | 
						
							| 8 |  | funimaexg | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  →  ( 𝐹  “  𝑋 )  ∈  V ) | 
						
							| 9 | 8 | uniexd | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  →  ∪  ( 𝐹  “  𝑋 )  ∈  V ) | 
						
							| 10 | 3 6 7 9 | fvmptd | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  𝑃 )  →  ( 𝐻 ‘ 𝑋 )  =  ∪  ( 𝐹  “  𝑋 ) ) |