| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
| 2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
| 3 |
2
|
a1i |
|- ( ( Fun F /\ X e. P ) -> H = ( p e. P |-> U. ( F " p ) ) ) |
| 4 |
|
imaeq2 |
|- ( p = X -> ( F " p ) = ( F " X ) ) |
| 5 |
4
|
unieqd |
|- ( p = X -> U. ( F " p ) = U. ( F " X ) ) |
| 6 |
5
|
adantl |
|- ( ( ( Fun F /\ X e. P ) /\ p = X ) -> U. ( F " p ) = U. ( F " X ) ) |
| 7 |
|
simpr |
|- ( ( Fun F /\ X e. P ) -> X e. P ) |
| 8 |
|
funimaexg |
|- ( ( Fun F /\ X e. P ) -> ( F " X ) e. _V ) |
| 9 |
8
|
uniexd |
|- ( ( Fun F /\ X e. P ) -> U. ( F " X ) e. _V ) |
| 10 |
3 6 7 9
|
fvmptd |
|- ( ( Fun F /\ X e. P ) -> ( H ` X ) = U. ( F " X ) ) |