Metamath Proof Explorer


Theorem fundcmpsurinjlem3

Description: Lemma 3 for fundcmpsurinj . (Contributed by AV, 3-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.h
|- H = ( p e. P |-> U. ( F " p ) )
Assertion fundcmpsurinjlem3
|- ( ( Fun F /\ X e. P ) -> ( H ` X ) = U. ( F " X ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.h
 |-  H = ( p e. P |-> U. ( F " p ) )
3 2 a1i
 |-  ( ( Fun F /\ X e. P ) -> H = ( p e. P |-> U. ( F " p ) ) )
4 imaeq2
 |-  ( p = X -> ( F " p ) = ( F " X ) )
5 4 unieqd
 |-  ( p = X -> U. ( F " p ) = U. ( F " X ) )
6 5 adantl
 |-  ( ( ( Fun F /\ X e. P ) /\ p = X ) -> U. ( F " p ) = U. ( F " X ) )
7 simpr
 |-  ( ( Fun F /\ X e. P ) -> X e. P )
8 funimaexg
 |-  ( ( Fun F /\ X e. P ) -> ( F " X ) e. _V )
9 8 uniexd
 |-  ( ( Fun F /\ X e. P ) -> U. ( F " X ) e. _V )
10 3 6 7 9 fvmptd
 |-  ( ( Fun F /\ X e. P ) -> ( H ` X ) = U. ( F " X ) )