| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h |  |-  H = ( p e. P |-> U. ( F " p ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ( Fun F /\ X e. P ) -> H = ( p e. P |-> U. ( F " p ) ) ) | 
						
							| 4 |  | imaeq2 |  |-  ( p = X -> ( F " p ) = ( F " X ) ) | 
						
							| 5 | 4 | unieqd |  |-  ( p = X -> U. ( F " p ) = U. ( F " X ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( Fun F /\ X e. P ) /\ p = X ) -> U. ( F " p ) = U. ( F " X ) ) | 
						
							| 7 |  | simpr |  |-  ( ( Fun F /\ X e. P ) -> X e. P ) | 
						
							| 8 |  | funimaexg |  |-  ( ( Fun F /\ X e. P ) -> ( F " X ) e. _V ) | 
						
							| 9 | 8 | uniexd |  |-  ( ( Fun F /\ X e. P ) -> U. ( F " X ) e. _V ) | 
						
							| 10 | 3 6 7 9 | fvmptd |  |-  ( ( Fun F /\ X e. P ) -> ( H ` X ) = U. ( F " X ) ) |