Description: Lemma for imasetpreimafvbij : the mapping H is a function into the range of function F . (Contributed by AV, 22-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fundcmpsurinj.p | |- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | |
| fundcmpsurinj.h | |- H = ( p e. P |-> U. ( F " p ) ) | ||
| Assertion | imasetpreimafvbijlemf | |- ( F Fn A -> H : P --> ( F " A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fundcmpsurinj.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | |
| 2 | fundcmpsurinj.h | |- H = ( p e. P |-> U. ( F " p ) ) | |
| 3 | 1 | uniimaelsetpreimafv | |- ( ( F Fn A /\ p e. P ) -> U. ( F " p ) e. ran F ) | 
| 4 | fnima | |- ( F Fn A -> ( F " A ) = ran F ) | |
| 5 | 4 | adantr | |- ( ( F Fn A /\ p e. P ) -> ( F " A ) = ran F ) | 
| 6 | 3 5 | eleqtrrd | |- ( ( F Fn A /\ p e. P ) -> U. ( F " p ) e. ( F " A ) ) | 
| 7 | 6 2 | fmptd | |- ( F Fn A -> H : P --> ( F " A ) ) |