Metamath Proof Explorer


Theorem imasetpreimafvbijlemf

Description: Lemma for imasetpreimafvbij : the mapping H is a function into the range of function F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
fundcmpsurinj.h
|- H = ( p e. P |-> U. ( F " p ) )
Assertion imasetpreimafvbijlemf
|- ( F Fn A -> H : P --> ( F " A ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 fundcmpsurinj.h
 |-  H = ( p e. P |-> U. ( F " p ) )
3 1 uniimaelsetpreimafv
 |-  ( ( F Fn A /\ p e. P ) -> U. ( F " p ) e. ran F )
4 fnima
 |-  ( F Fn A -> ( F " A ) = ran F )
5 4 adantr
 |-  ( ( F Fn A /\ p e. P ) -> ( F " A ) = ran F )
6 3 5 eleqtrrd
 |-  ( ( F Fn A /\ p e. P ) -> U. ( F " p ) e. ( F " A ) )
7 6 2 fmptd
 |-  ( F Fn A -> H : P --> ( F " A ) )