Metamath Proof Explorer


Theorem imasetpreimafvbijlemf

Description: Lemma for imasetpreimafvbij : the mapping H is a function into the range of function F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion imasetpreimafvbijlemf F Fn A H : P F A

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 1 uniimaelsetpreimafv F Fn A p P F p ran F
4 fnima F Fn A F A = ran F
5 4 adantr F Fn A p P F A = ran F
6 3 5 eleqtrrd F Fn A p P F p F A
7 6 2 fmptd F Fn A H : P F A