Metamath Proof Explorer


Theorem fundcmpsurinjlem3

Description: Lemma 3 for fundcmpsurinj . (Contributed by AV, 3-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion fundcmpsurinjlem3 Fun F X P H X = F X

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 2 a1i Fun F X P H = p P F p
4 imaeq2 p = X F p = F X
5 4 unieqd p = X F p = F X
6 5 adantl Fun F X P p = X F p = F X
7 simpr Fun F X P X P
8 funimaexg Fun F X P F X V
9 8 uniexd Fun F X P F X V
10 3 6 7 9 fvmptd Fun F X P H X = F X