Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Preimages of function values
fundcmpsurinjlem3
Next ⟩
imasetpreimafvbijlemf
Metamath Proof Explorer
Ascii
Unicode
Theorem
fundcmpsurinjlem3
Description:
Lemma 3 for
fundcmpsurinj
.
(Contributed by
AV
, 3-Mar-2024)
Ref
Expression
Hypotheses
fundcmpsurinj.p
⊢
P
=
z
|
∃
x
∈
A
z
=
F
-1
F
⁡
x
fundcmpsurinj.h
⊢
H
=
p
∈
P
⟼
⋃
F
p
Assertion
fundcmpsurinjlem3
⊢
Fun
⁡
F
∧
X
∈
P
→
H
⁡
X
=
⋃
F
X
Proof
Step
Hyp
Ref
Expression
1
fundcmpsurinj.p
⊢
P
=
z
|
∃
x
∈
A
z
=
F
-1
F
⁡
x
2
fundcmpsurinj.h
⊢
H
=
p
∈
P
⟼
⋃
F
p
3
2
a1i
⊢
Fun
⁡
F
∧
X
∈
P
→
H
=
p
∈
P
⟼
⋃
F
p
4
imaeq2
⊢
p
=
X
→
F
p
=
F
X
5
4
unieqd
⊢
p
=
X
→
⋃
F
p
=
⋃
F
X
6
5
adantl
⊢
Fun
⁡
F
∧
X
∈
P
∧
p
=
X
→
⋃
F
p
=
⋃
F
X
7
simpr
⊢
Fun
⁡
F
∧
X
∈
P
→
X
∈
P
8
funimaexg
⊢
Fun
⁡
F
∧
X
∈
P
→
F
X
∈
V
9
8
uniexd
⊢
Fun
⁡
F
∧
X
∈
P
→
⋃
F
X
∈
V
10
3
6
7
9
fvmptd
⊢
Fun
⁡
F
∧
X
∈
P
→
H
⁡
X
=
⋃
F
X