Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
fundcmpsurinj.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑃 ↦ ∪ ( 𝐹 “ 𝑝 ) ) |
3 |
1 2
|
imasetpreimafvbijlemf1 |
⊢ ( 𝐹 Fn 𝐴 → 𝐻 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐻 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ) |
5 |
1 2
|
imasetpreimafvbijlemfo |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐻 : 𝑃 –onto→ ( 𝐹 “ 𝐴 ) ) |
6 |
|
df-f1o |
⊢ ( 𝐻 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐻 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ∧ 𝐻 : 𝑃 –onto→ ( 𝐹 “ 𝐴 ) ) ) |
7 |
4 5 6
|
sylanbrc |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐻 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |