Metamath Proof Explorer


Theorem imasetpreimafvbij

Description: The mapping H is a bijective function betwen the set P of all preimages of values of function F and the range of F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
Assertion imasetpreimafvbij ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐻 : 𝑃1-1-onto→ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 fundcmpsurinj.h 𝐻 = ( 𝑝𝑃 ( 𝐹𝑝 ) )
3 1 2 imasetpreimafvbijlemf1 ( 𝐹 Fn 𝐴𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) )
4 3 adantr ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) )
5 1 2 imasetpreimafvbijlemfo ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐻 : 𝑃onto→ ( 𝐹𝐴 ) )
6 df-f1o ( 𝐻 : 𝑃1-1-onto→ ( 𝐹𝐴 ) ↔ ( 𝐻 : 𝑃1-1→ ( 𝐹𝐴 ) ∧ 𝐻 : 𝑃onto→ ( 𝐹𝐴 ) ) )
7 4 5 6 sylanbrc ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐻 : 𝑃1-1-onto→ ( 𝐹𝐴 ) )