| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinj.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | fundcmpsurinj.h | ⊢ 𝐻  =  ( 𝑝  ∈  𝑃  ↦  ∪  ( 𝐹  “  𝑝 ) ) | 
						
							| 3 | 1 2 | imasetpreimafvbijlemf1 | ⊢ ( 𝐹  Fn  𝐴  →  𝐻 : 𝑃 –1-1→ ( 𝐹  “  𝐴 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐻 : 𝑃 –1-1→ ( 𝐹  “  𝐴 ) ) | 
						
							| 5 | 1 2 | imasetpreimafvbijlemfo | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐻 : 𝑃 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 6 |  | df-f1o | ⊢ ( 𝐻 : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐻 : 𝑃 –1-1→ ( 𝐹  “  𝐴 )  ∧  𝐻 : 𝑃 –onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 7 | 4 5 6 | sylanbrc | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐻 : 𝑃 –1-1-onto→ ( 𝐹  “  𝐴 ) ) |