Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
3 |
2
|
rabbidv |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) } ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) } ) |
5 |
|
id |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 Fn 𝐴 ) |
6 |
|
simpl |
⊢ ( ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) → 𝑆 ∈ 𝑃 ) |
7 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) → 𝑋 ∈ 𝑆 ) |
8 |
5 6 7
|
3anim123i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) ) |
10 |
1
|
elsetpreimafvrab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑆 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) } ) |
12 |
|
simpr |
⊢ ( ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) → 𝑅 ∈ 𝑃 ) |
13 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) → 𝑌 ∈ 𝑅 ) |
14 |
5 12 13
|
3anim123i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) → ( 𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅 ) ) |
16 |
1
|
elsetpreimafvrab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅 ) → 𝑅 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) } ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑅 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) } ) |
18 |
4 11 17
|
3eqtr4d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) → 𝑆 = 𝑅 ) |
19 |
18
|
ex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑆 = 𝑅 ) ) |