Description: Lemma 1 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fundcmpsurinj.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
fundcmpsurinj.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) | ||
Assertion | fundcmpsurinjlem1 | ⊢ ran 𝐺 = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
2 | fundcmpsurinj.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) | |
3 | 2 | rnmpt | ⊢ ran 𝐺 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
4 | 3 1 | eqtr4i | ⊢ ran 𝐺 = 𝑃 |