Metamath Proof Explorer


Theorem imasetpreimafvbijlemfo

Description: Lemma for imasetpreimafvbij : the mapping H is a function onto the range of function F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion imasetpreimafvbijlemfo F Fn A A V H : P onto F A

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 1 2 imasetpreimafvbijlemf F Fn A H : P F A
4 3 adantr F Fn A A V H : P F A
5 1 preimafvelsetpreimafv F Fn A A V a A F -1 F a P
6 5 3expa F Fn A A V a A F -1 F a P
7 imaeq2 p = F -1 F a F p = F F -1 F a
8 7 unieqd p = F -1 F a F p = F F -1 F a
9 8 eqeq2d p = F -1 F a F a = F p F a = F F -1 F a
10 9 adantl F Fn A A V a A p = F -1 F a F a = F p F a = F F -1 F a
11 uniimaprimaeqfv F Fn A a A F F -1 F a = F a
12 11 adantlr F Fn A A V a A F F -1 F a = F a
13 12 eqcomd F Fn A A V a A F a = F F -1 F a
14 6 10 13 rspcedvd F Fn A A V a A p P F a = F p
15 eqeq1 y = F a y = F p F a = F p
16 15 eqcoms F a = y y = F p F a = F p
17 16 rexbidv F a = y p P y = F p p P F a = F p
18 14 17 syl5ibrcom F Fn A A V a A F a = y p P y = F p
19 18 rexlimdva F Fn A A V a A F a = y p P y = F p
20 8 eqcomd p = F -1 F a F F -1 F a = F p
21 13 20 sylan9eq F Fn A A V a A p = F -1 F a F a = F p
22 21 ex F Fn A A V a A p = F -1 F a F a = F p
23 22 reximdva F Fn A A V a A p = F -1 F a a A F a = F p
24 1 elsetpreimafv p P x A p = F -1 F x
25 fveq2 a = x F a = F x
26 25 sneqd a = x F a = F x
27 26 imaeq2d a = x F -1 F a = F -1 F x
28 27 eqeq2d a = x p = F -1 F a p = F -1 F x
29 28 cbvrexvw a A p = F -1 F a x A p = F -1 F x
30 24 29 sylibr p P a A p = F -1 F a
31 23 30 impel F Fn A A V p P a A F a = F p
32 eqeq2 y = F p F a = y F a = F p
33 32 rexbidv y = F p a A F a = y a A F a = F p
34 31 33 syl5ibrcom F Fn A A V p P y = F p a A F a = y
35 34 rexlimdva F Fn A A V p P y = F p a A F a = y
36 19 35 impbid F Fn A A V a A F a = y p P y = F p
37 36 abbidv F Fn A A V y | a A F a = y = y | p P y = F p
38 fnfun F Fn A Fun F
39 fndm F Fn A dom F = A
40 eqimss2 dom F = A A dom F
41 39 40 syl F Fn A A dom F
42 38 41 jca F Fn A Fun F A dom F
43 42 adantr F Fn A A V Fun F A dom F
44 dfimafn Fun F A dom F F A = y | a A F a = y
45 43 44 syl F Fn A A V F A = y | a A F a = y
46 2 rnmpt ran H = y | p P y = F p
47 46 a1i F Fn A A V ran H = y | p P y = F p
48 37 45 47 3eqtr4rd F Fn A A V ran H = F A
49 dffo2 H : P onto F A H : P F A ran H = F A
50 4 48 49 sylanbrc F Fn A A V H : P onto F A