Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|
2 |
|
fundcmpsurinj.h |
|
3 |
1 2
|
imasetpreimafvbijlemf |
|
4 |
3
|
adantr |
|
5 |
1
|
preimafvelsetpreimafv |
|
6 |
5
|
3expa |
|
7 |
|
imaeq2 |
|
8 |
7
|
unieqd |
|
9 |
8
|
eqeq2d |
|
10 |
9
|
adantl |
|
11 |
|
uniimaprimaeqfv |
|
12 |
11
|
adantlr |
|
13 |
12
|
eqcomd |
|
14 |
6 10 13
|
rspcedvd |
|
15 |
|
eqeq1 |
|
16 |
15
|
eqcoms |
|
17 |
16
|
rexbidv |
|
18 |
14 17
|
syl5ibrcom |
|
19 |
18
|
rexlimdva |
|
20 |
8
|
eqcomd |
|
21 |
13 20
|
sylan9eq |
|
22 |
21
|
ex |
|
23 |
22
|
reximdva |
|
24 |
1
|
elsetpreimafv |
|
25 |
|
fveq2 |
|
26 |
25
|
sneqd |
|
27 |
26
|
imaeq2d |
|
28 |
27
|
eqeq2d |
|
29 |
28
|
cbvrexvw |
|
30 |
24 29
|
sylibr |
|
31 |
23 30
|
impel |
|
32 |
|
eqeq2 |
|
33 |
32
|
rexbidv |
|
34 |
31 33
|
syl5ibrcom |
|
35 |
34
|
rexlimdva |
|
36 |
19 35
|
impbid |
|
37 |
36
|
abbidv |
|
38 |
|
fnfun |
|
39 |
|
fndm |
|
40 |
|
eqimss2 |
|
41 |
39 40
|
syl |
|
42 |
38 41
|
jca |
|
43 |
42
|
adantr |
|
44 |
|
dfimafn |
|
45 |
43 44
|
syl |
|
46 |
2
|
rnmpt |
|
47 |
46
|
a1i |
|
48 |
37 45 47
|
3eqtr4rd |
|
49 |
|
dffo2 |
|
50 |
4 48 49
|
sylanbrc |
|