Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
fundcmpsurinj.h |
|- H = ( p e. P |-> U. ( F " p ) ) |
3 |
1 2
|
imasetpreimafvbijlemf |
|- ( F Fn A -> H : P --> ( F " A ) ) |
4 |
3
|
adantr |
|- ( ( F Fn A /\ A e. V ) -> H : P --> ( F " A ) ) |
5 |
1
|
preimafvelsetpreimafv |
|- ( ( F Fn A /\ A e. V /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) |
6 |
5
|
3expa |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> ( `' F " { ( F ` a ) } ) e. P ) |
7 |
|
imaeq2 |
|- ( p = ( `' F " { ( F ` a ) } ) -> ( F " p ) = ( F " ( `' F " { ( F ` a ) } ) ) ) |
8 |
7
|
unieqd |
|- ( p = ( `' F " { ( F ` a ) } ) -> U. ( F " p ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) |
9 |
8
|
eqeq2d |
|- ( p = ( `' F " { ( F ` a ) } ) -> ( ( F ` a ) = U. ( F " p ) <-> ( F ` a ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) |
10 |
9
|
adantl |
|- ( ( ( ( F Fn A /\ A e. V ) /\ a e. A ) /\ p = ( `' F " { ( F ` a ) } ) ) -> ( ( F ` a ) = U. ( F " p ) <-> ( F ` a ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) ) |
11 |
|
uniimaprimaeqfv |
|- ( ( F Fn A /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) |
12 |
11
|
adantlr |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = ( F ` a ) ) |
13 |
12
|
eqcomd |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> ( F ` a ) = U. ( F " ( `' F " { ( F ` a ) } ) ) ) |
14 |
6 10 13
|
rspcedvd |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> E. p e. P ( F ` a ) = U. ( F " p ) ) |
15 |
|
eqeq1 |
|- ( y = ( F ` a ) -> ( y = U. ( F " p ) <-> ( F ` a ) = U. ( F " p ) ) ) |
16 |
15
|
eqcoms |
|- ( ( F ` a ) = y -> ( y = U. ( F " p ) <-> ( F ` a ) = U. ( F " p ) ) ) |
17 |
16
|
rexbidv |
|- ( ( F ` a ) = y -> ( E. p e. P y = U. ( F " p ) <-> E. p e. P ( F ` a ) = U. ( F " p ) ) ) |
18 |
14 17
|
syl5ibrcom |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> ( ( F ` a ) = y -> E. p e. P y = U. ( F " p ) ) ) |
19 |
18
|
rexlimdva |
|- ( ( F Fn A /\ A e. V ) -> ( E. a e. A ( F ` a ) = y -> E. p e. P y = U. ( F " p ) ) ) |
20 |
8
|
eqcomd |
|- ( p = ( `' F " { ( F ` a ) } ) -> U. ( F " ( `' F " { ( F ` a ) } ) ) = U. ( F " p ) ) |
21 |
13 20
|
sylan9eq |
|- ( ( ( ( F Fn A /\ A e. V ) /\ a e. A ) /\ p = ( `' F " { ( F ` a ) } ) ) -> ( F ` a ) = U. ( F " p ) ) |
22 |
21
|
ex |
|- ( ( ( F Fn A /\ A e. V ) /\ a e. A ) -> ( p = ( `' F " { ( F ` a ) } ) -> ( F ` a ) = U. ( F " p ) ) ) |
23 |
22
|
reximdva |
|- ( ( F Fn A /\ A e. V ) -> ( E. a e. A p = ( `' F " { ( F ` a ) } ) -> E. a e. A ( F ` a ) = U. ( F " p ) ) ) |
24 |
1
|
elsetpreimafv |
|- ( p e. P -> E. x e. A p = ( `' F " { ( F ` x ) } ) ) |
25 |
|
fveq2 |
|- ( a = x -> ( F ` a ) = ( F ` x ) ) |
26 |
25
|
sneqd |
|- ( a = x -> { ( F ` a ) } = { ( F ` x ) } ) |
27 |
26
|
imaeq2d |
|- ( a = x -> ( `' F " { ( F ` a ) } ) = ( `' F " { ( F ` x ) } ) ) |
28 |
27
|
eqeq2d |
|- ( a = x -> ( p = ( `' F " { ( F ` a ) } ) <-> p = ( `' F " { ( F ` x ) } ) ) ) |
29 |
28
|
cbvrexvw |
|- ( E. a e. A p = ( `' F " { ( F ` a ) } ) <-> E. x e. A p = ( `' F " { ( F ` x ) } ) ) |
30 |
24 29
|
sylibr |
|- ( p e. P -> E. a e. A p = ( `' F " { ( F ` a ) } ) ) |
31 |
23 30
|
impel |
|- ( ( ( F Fn A /\ A e. V ) /\ p e. P ) -> E. a e. A ( F ` a ) = U. ( F " p ) ) |
32 |
|
eqeq2 |
|- ( y = U. ( F " p ) -> ( ( F ` a ) = y <-> ( F ` a ) = U. ( F " p ) ) ) |
33 |
32
|
rexbidv |
|- ( y = U. ( F " p ) -> ( E. a e. A ( F ` a ) = y <-> E. a e. A ( F ` a ) = U. ( F " p ) ) ) |
34 |
31 33
|
syl5ibrcom |
|- ( ( ( F Fn A /\ A e. V ) /\ p e. P ) -> ( y = U. ( F " p ) -> E. a e. A ( F ` a ) = y ) ) |
35 |
34
|
rexlimdva |
|- ( ( F Fn A /\ A e. V ) -> ( E. p e. P y = U. ( F " p ) -> E. a e. A ( F ` a ) = y ) ) |
36 |
19 35
|
impbid |
|- ( ( F Fn A /\ A e. V ) -> ( E. a e. A ( F ` a ) = y <-> E. p e. P y = U. ( F " p ) ) ) |
37 |
36
|
abbidv |
|- ( ( F Fn A /\ A e. V ) -> { y | E. a e. A ( F ` a ) = y } = { y | E. p e. P y = U. ( F " p ) } ) |
38 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
39 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
40 |
|
eqimss2 |
|- ( dom F = A -> A C_ dom F ) |
41 |
39 40
|
syl |
|- ( F Fn A -> A C_ dom F ) |
42 |
38 41
|
jca |
|- ( F Fn A -> ( Fun F /\ A C_ dom F ) ) |
43 |
42
|
adantr |
|- ( ( F Fn A /\ A e. V ) -> ( Fun F /\ A C_ dom F ) ) |
44 |
|
dfimafn |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. a e. A ( F ` a ) = y } ) |
45 |
43 44
|
syl |
|- ( ( F Fn A /\ A e. V ) -> ( F " A ) = { y | E. a e. A ( F ` a ) = y } ) |
46 |
2
|
rnmpt |
|- ran H = { y | E. p e. P y = U. ( F " p ) } |
47 |
46
|
a1i |
|- ( ( F Fn A /\ A e. V ) -> ran H = { y | E. p e. P y = U. ( F " p ) } ) |
48 |
37 45 47
|
3eqtr4rd |
|- ( ( F Fn A /\ A e. V ) -> ran H = ( F " A ) ) |
49 |
|
dffo2 |
|- ( H : P -onto-> ( F " A ) <-> ( H : P --> ( F " A ) /\ ran H = ( F " A ) ) ) |
50 |
4 48 49
|
sylanbrc |
|- ( ( F Fn A /\ A e. V ) -> H : P -onto-> ( F " A ) ) |