Metamath Proof Explorer


Theorem uniimaprimaeqfv

Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024)

Ref Expression
Assertion uniimaprimaeqfv FFnAXAFF-1FX=FX

Proof

Step Hyp Ref Expression
1 dffn3 FFnAF:AranF
2 1 biimpi FFnAF:AranF
3 2 adantr FFnAXAF:AranF
4 cnvimass F-1FXdomF
5 fndm FFnAdomF=A
6 4 5 sseqtrid FFnAF-1FXA
7 6 adantr FFnAXAF-1FXA
8 preimafvsnel FFnAXAXF-1FX
9 3 7 8 3jca FFnAXAF:AranFF-1FXAXF-1FX
10 fniniseg FFnAxF-1FXxAFx=FX
11 10 adantr FFnAXAxF-1FXxAFx=FX
12 simpr xAFx=FXFx=FX
13 11 12 syl6bi FFnAXAxF-1FXFx=FX
14 13 ralrimiv FFnAXAxF-1FXFx=FX
15 uniimafveqt F:AranFF-1FXAXF-1FXxF-1FXFx=FXFF-1FX=FX
16 9 14 15 sylc FFnAXAFF-1FX=FX