| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | preimafvsnel |  |-  ( ( F Fn A /\ x e. A ) -> x e. ( `' F " { ( F ` x ) } ) ) | 
						
							| 3 |  | n0i |  |-  ( x e. ( `' F " { ( F ` x ) } ) -> -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( F Fn A /\ x e. A ) -> -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 5 | 4 | ralrimiva |  |-  ( F Fn A -> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 6 |  | ralnex |  |-  ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 7 |  | eqcom |  |-  ( (/) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 8 | 7 | notbii |  |-  ( -. (/) = ( `' F " { ( F ` x ) } ) <-> -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 9 | 8 | ralbii |  |-  ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 10 | 6 9 | bitr3i |  |-  ( -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) | 
						
							| 11 | 5 10 | sylibr |  |-  ( F Fn A -> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 12 |  | 0ex |  |-  (/) e. _V | 
						
							| 13 | 1 | elsetpreimafvb |  |-  ( (/) e. _V -> ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 15 | 11 14 | sylnibr |  |-  ( F Fn A -> -. (/) e. P ) | 
						
							| 16 |  | df-nel |  |-  ( (/) e/ P <-> -. (/) e. P ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( F Fn A -> (/) e/ P ) |