Metamath Proof Explorer


Theorem 0nelsetpreimafv

Description: The empty set is not an element of the class P of all preimages of function values. (Contributed by AV, 6-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion 0nelsetpreimafv
|- ( F Fn A -> (/) e/ P )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 preimafvsnel
 |-  ( ( F Fn A /\ x e. A ) -> x e. ( `' F " { ( F ` x ) } ) )
3 n0i
 |-  ( x e. ( `' F " { ( F ` x ) } ) -> -. ( `' F " { ( F ` x ) } ) = (/) )
4 2 3 syl
 |-  ( ( F Fn A /\ x e. A ) -> -. ( `' F " { ( F ` x ) } ) = (/) )
5 4 ralrimiva
 |-  ( F Fn A -> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) )
6 ralnex
 |-  ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) )
7 eqcom
 |-  ( (/) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` x ) } ) = (/) )
8 7 notbii
 |-  ( -. (/) = ( `' F " { ( F ` x ) } ) <-> -. ( `' F " { ( F ` x ) } ) = (/) )
9 8 ralbii
 |-  ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) )
10 6 9 bitr3i
 |-  ( -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) )
11 5 10 sylibr
 |-  ( F Fn A -> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) )
12 0ex
 |-  (/) e. _V
13 1 elsetpreimafvb
 |-  ( (/) e. _V -> ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) )
14 12 13 ax-mp
 |-  ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) )
15 11 14 sylnibr
 |-  ( F Fn A -> -. (/) e. P )
16 df-nel
 |-  ( (/) e/ P <-> -. (/) e. P )
17 15 16 sylibr
 |-  ( F Fn A -> (/) e/ P )