Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
preimafvsnel |
|- ( ( F Fn A /\ x e. A ) -> x e. ( `' F " { ( F ` x ) } ) ) |
3 |
|
n0i |
|- ( x e. ( `' F " { ( F ` x ) } ) -> -. ( `' F " { ( F ` x ) } ) = (/) ) |
4 |
2 3
|
syl |
|- ( ( F Fn A /\ x e. A ) -> -. ( `' F " { ( F ` x ) } ) = (/) ) |
5 |
4
|
ralrimiva |
|- ( F Fn A -> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) |
6 |
|
ralnex |
|- ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) |
7 |
|
eqcom |
|- ( (/) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` x ) } ) = (/) ) |
8 |
7
|
notbii |
|- ( -. (/) = ( `' F " { ( F ` x ) } ) <-> -. ( `' F " { ( F ` x ) } ) = (/) ) |
9 |
8
|
ralbii |
|- ( A. x e. A -. (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) |
10 |
6 9
|
bitr3i |
|- ( -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) <-> A. x e. A -. ( `' F " { ( F ` x ) } ) = (/) ) |
11 |
5 10
|
sylibr |
|- ( F Fn A -> -. E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) |
12 |
|
0ex |
|- (/) e. _V |
13 |
1
|
elsetpreimafvb |
|- ( (/) e. _V -> ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) ) |
14 |
12 13
|
ax-mp |
|- ( (/) e. P <-> E. x e. A (/) = ( `' F " { ( F ` x ) } ) ) |
15 |
11 14
|
sylnibr |
|- ( F Fn A -> -. (/) e. P ) |
16 |
|
df-nel |
|- ( (/) e/ P <-> -. (/) e. P ) |
17 |
15 16
|
sylibr |
|- ( F Fn A -> (/) e/ P ) |