Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
preimafvsnel |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
3 |
|
n0i |
⊢ ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) → ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
5 |
4
|
ralrimiva |
⊢ ( 𝐹 Fn 𝐴 → ∀ 𝑥 ∈ 𝐴 ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
6 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
7 |
|
eqcom |
⊢ ( ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
8 |
7
|
notbii |
⊢ ( ¬ ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
10 |
6 9
|
bitr3i |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ∅ ) |
11 |
5 10
|
sylibr |
⊢ ( 𝐹 Fn 𝐴 → ¬ ∃ 𝑥 ∈ 𝐴 ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
1
|
elsetpreimafvb |
⊢ ( ∅ ∈ V → ( ∅ ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ∅ ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 ∅ = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
15 |
11 14
|
sylnibr |
⊢ ( 𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃 ) |
16 |
|
df-nel |
⊢ ( ∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃 ) |
17 |
15 16
|
sylibr |
⊢ ( 𝐹 Fn 𝐴 → ∅ ∉ 𝑃 ) |