Metamath Proof Explorer


Theorem 0nelsetpreimafv

Description: The empty set is not an element of the class P of all preimages of function values. (Contributed by AV, 6-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion 0nelsetpreimafv ( 𝐹 Fn 𝐴 → ∅ ∉ 𝑃 )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 preimafvsnel ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → 𝑥 ∈ ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
3 n0i ( 𝑥 ∈ ( 𝐹 “ { ( 𝐹𝑥 ) } ) → ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
4 2 3 syl ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
5 4 ralrimiva ( 𝐹 Fn 𝐴 → ∀ 𝑥𝐴 ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
6 ralnex ( ∀ 𝑥𝐴 ¬ ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ¬ ∃ 𝑥𝐴 ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
7 eqcom ( ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
8 7 notbii ( ¬ ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
9 8 ralbii ( ∀ 𝑥𝐴 ¬ ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ∀ 𝑥𝐴 ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
10 6 9 bitr3i ( ¬ ∃ 𝑥𝐴 ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ∀ 𝑥𝐴 ¬ ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ∅ )
11 5 10 sylibr ( 𝐹 Fn 𝐴 → ¬ ∃ 𝑥𝐴 ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
12 0ex ∅ ∈ V
13 1 elsetpreimafvb ( ∅ ∈ V → ( ∅ ∈ 𝑃 ↔ ∃ 𝑥𝐴 ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
14 12 13 ax-mp ( ∅ ∈ 𝑃 ↔ ∃ 𝑥𝐴 ∅ = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
15 11 14 sylnibr ( 𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃 )
16 df-nel ( ∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃 )
17 15 16 sylibr ( 𝐹 Fn 𝐴 → ∅ ∉ 𝑃 )