| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | preimafvsnel | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 3 |  | n0i | ⊢ ( 𝑥  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  →  ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑥  ∈  𝐴 )  →  ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 5 | 4 | ralrimiva | ⊢ ( 𝐹  Fn  𝐴  →  ∀ 𝑥  ∈  𝐴 ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 6 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ¬  ∃ 𝑥  ∈  𝐴 ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 7 |  | eqcom | ⊢ ( ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 8 | 7 | notbii | ⊢ ( ¬  ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ∀ 𝑥  ∈  𝐴 ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 10 | 6 9 | bitr3i | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ∀ 𝑥  ∈  𝐴 ¬  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ∅ ) | 
						
							| 11 | 5 10 | sylibr | ⊢ ( 𝐹  Fn  𝐴  →  ¬  ∃ 𝑥  ∈  𝐴 ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 12 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 13 | 1 | elsetpreimafvb | ⊢ ( ∅  ∈  V  →  ( ∅  ∈  𝑃  ↔  ∃ 𝑥  ∈  𝐴 ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( ∅  ∈  𝑃  ↔  ∃ 𝑥  ∈  𝐴 ∅  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 15 | 11 14 | sylnibr | ⊢ ( 𝐹  Fn  𝐴  →  ¬  ∅  ∈  𝑃 ) | 
						
							| 16 |  | df-nel | ⊢ ( ∅  ∉  𝑃  ↔  ¬  ∅  ∈  𝑃 ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝐹  Fn  𝐴  →  ∅  ∉  𝑃 ) |