Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinj.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
1
|
fundcmpsurbijinjpreimafv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ 𝑓 ∃ 𝑗 ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) |
3 |
|
vex |
⊢ 𝑗 ∈ V |
4 |
|
vex |
⊢ 𝑓 ∈ V |
5 |
3 4
|
coex |
⊢ ( 𝑗 ∘ 𝑓 ) ∈ V |
6 |
|
simprl1 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) → 𝑔 : 𝐴 –onto→ 𝑃 ) |
7 |
|
simp3 |
⊢ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) → 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) |
8 |
|
f1of1 |
⊢ ( 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) → 𝑓 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) → 𝑓 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ) |
10 |
|
f1co |
⊢ ( ( 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ∧ 𝑓 : 𝑃 –1-1→ ( 𝐹 “ 𝐴 ) ) → ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) → ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) → ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ) |
13 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) → 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) |
14 |
6 12 13
|
3jca |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) → ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) |
15 |
|
f1eq1 |
⊢ ( ℎ = ( 𝑗 ∘ 𝑓 ) → ( ℎ : 𝑃 –1-1→ 𝐵 ↔ ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ) ) |
16 |
|
coeq1 |
⊢ ( ℎ = ( 𝑗 ∘ 𝑓 ) → ( ℎ ∘ 𝑔 ) = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) |
17 |
16
|
eqeq2d |
⊢ ( ℎ = ( 𝑗 ∘ 𝑓 ) → ( 𝐹 = ( ℎ ∘ 𝑔 ) ↔ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) |
18 |
15 17
|
3anbi23d |
⊢ ( ℎ = ( 𝑗 ∘ 𝑓 ) → ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ↔ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) ) |
19 |
18
|
spcegv |
⊢ ( ( 𝑗 ∘ 𝑓 ) ∈ V → ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ( 𝑗 ∘ 𝑓 ) : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) → ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
20 |
5 14 19
|
mpsyl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) ∧ ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) ) → ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) → ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
22 |
21
|
exlimdvv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑓 ∃ 𝑗 ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) → ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
23 |
22
|
eximdv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑔 ∃ 𝑓 ∃ 𝑗 ( ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ 𝑓 : 𝑃 –1-1-onto→ ( 𝐹 “ 𝐴 ) ∧ 𝑗 : ( 𝐹 “ 𝐴 ) –1-1→ 𝐵 ) ∧ 𝐹 = ( ( 𝑗 ∘ 𝑓 ) ∘ 𝑔 ) ) → ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) ) |
24 |
2 23
|
mpd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –onto→ 𝑃 ∧ ℎ : 𝑃 –1-1→ 𝐵 ∧ 𝐹 = ( ℎ ∘ 𝑔 ) ) ) |