Metamath Proof Explorer


Theorem fundcmpsurinjpreimafv

Description: Every function F : A --> B can be decomposed into a surjective function onto P and an injective function from P . (Contributed by AV, 12-Mar-2024) (Proof shortened by AV, 22-Mar-2024)

Ref Expression
Hypothesis fundcmpsurinj.p P=z|xAz=F-1Fx
Assertion fundcmpsurinjpreimafv F:ABAVghg:AontoPh:P1-1BF=hg

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 1 fundcmpsurbijinjpreimafv F:ABAVgfjg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfg
3 vex jV
4 vex fV
5 3 4 coex jfV
6 simprl1 F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfgg:AontoP
7 simp3 g:AontoPf:P1-1 ontoFAj:FA1-1Bj:FA1-1B
8 f1of1 f:P1-1 ontoFAf:P1-1FA
9 8 3ad2ant2 g:AontoPf:P1-1 ontoFAj:FA1-1Bf:P1-1FA
10 f1co j:FA1-1Bf:P1-1FAjf:P1-1B
11 7 9 10 syl2anc g:AontoPf:P1-1 ontoFAj:FA1-1Bjf:P1-1B
12 11 ad2antrl F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfgjf:P1-1B
13 simprr F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfgF=jfg
14 6 12 13 3jca F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfgg:AontoPjf:P1-1BF=jfg
15 f1eq1 h=jfh:P1-1Bjf:P1-1B
16 coeq1 h=jfhg=jfg
17 16 eqeq2d h=jfF=hgF=jfg
18 15 17 3anbi23d h=jfg:AontoPh:P1-1BF=hgg:AontoPjf:P1-1BF=jfg
19 18 spcegv jfVg:AontoPjf:P1-1BF=jfghg:AontoPh:P1-1BF=hg
20 5 14 19 mpsyl F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfghg:AontoPh:P1-1BF=hg
21 20 ex F:ABAVg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfghg:AontoPh:P1-1BF=hg
22 21 exlimdvv F:ABAVfjg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfghg:AontoPh:P1-1BF=hg
23 22 eximdv F:ABAVgfjg:AontoPf:P1-1 ontoFAj:FA1-1BF=jfgghg:AontoPh:P1-1BF=hg
24 2 23 mpd F:ABAVghg:AontoPh:P1-1BF=hg