Metamath Proof Explorer


Theorem fundcmpsurinjpreimafv

Description: Every function F : A --> B can be decomposed into a surjective function onto P and an injective function from P . (Contributed by AV, 12-Mar-2024) (Proof shortened by AV, 22-Mar-2024)

Ref Expression
Hypothesis fundcmpsurinj.p P = z | x A z = F -1 F x
Assertion fundcmpsurinjpreimafv F : A B A V g h g : A onto P h : P 1-1 B F = h g

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 1 fundcmpsurbijinjpreimafv F : A B A V g f j g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g
3 vex j V
4 vex f V
5 3 4 coex j f V
6 simprl1 F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g g : A onto P
7 simp3 g : A onto P f : P 1-1 onto F A j : F A 1-1 B j : F A 1-1 B
8 f1of1 f : P 1-1 onto F A f : P 1-1 F A
9 8 3ad2ant2 g : A onto P f : P 1-1 onto F A j : F A 1-1 B f : P 1-1 F A
10 f1co j : F A 1-1 B f : P 1-1 F A j f : P 1-1 B
11 7 9 10 syl2anc g : A onto P f : P 1-1 onto F A j : F A 1-1 B j f : P 1-1 B
12 11 ad2antrl F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g j f : P 1-1 B
13 simprr F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g F = j f g
14 6 12 13 3jca F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g g : A onto P j f : P 1-1 B F = j f g
15 f1eq1 h = j f h : P 1-1 B j f : P 1-1 B
16 coeq1 h = j f h g = j f g
17 16 eqeq2d h = j f F = h g F = j f g
18 15 17 3anbi23d h = j f g : A onto P h : P 1-1 B F = h g g : A onto P j f : P 1-1 B F = j f g
19 18 spcegv j f V g : A onto P j f : P 1-1 B F = j f g h g : A onto P h : P 1-1 B F = h g
20 5 14 19 mpsyl F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g h g : A onto P h : P 1-1 B F = h g
21 20 ex F : A B A V g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g h g : A onto P h : P 1-1 B F = h g
22 21 exlimdvv F : A B A V f j g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g h g : A onto P h : P 1-1 B F = h g
23 22 eximdv F : A B A V g f j g : A onto P f : P 1-1 onto F A j : F A 1-1 B F = j f g g h g : A onto P h : P 1-1 B F = h g
24 2 23 mpd F : A B A V g h g : A onto P h : P 1-1 B F = h g