Metamath Proof Explorer
		
		
		
		Description:  The class P of all preimages of function values is a set.
       (Contributed by AV, 10-Mar-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | setpreimafvex.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
				
					|  | Assertion | setpreimafvex | ⊢  ( 𝐴  ∈  𝑉  →  𝑃  ∈  V ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | abrexexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) }  ∈  V ) | 
						
							| 3 | 1 2 | eqeltrid | ⊢ ( 𝐴  ∈  𝑉  →  𝑃  ∈  V ) |