Metamath Proof Explorer


Theorem setpreimafvex

Description: The class P of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion setpreimafvex ( 𝐴𝑉𝑃 ∈ V )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 abrexexg ( 𝐴𝑉 → { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) } ∈ V )
3 1 2 eqeltrid ( 𝐴𝑉𝑃 ∈ V )