Metamath Proof Explorer
Description: The class P of all preimages of function values is a set.
(Contributed by AV, 10-Mar-2024)
|
|
Ref |
Expression |
|
Hypothesis |
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
|
Assertion |
setpreimafvex |
⊢ ( 𝐴 ∈ 𝑉 → 𝑃 ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
abrexexg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ∈ V ) |
3 |
1 2
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → 𝑃 ∈ V ) |