Step |
Hyp |
Ref |
Expression |
1 |
|
fundcmpsurinjimaid.i |
⊢ 𝐼 = ( 𝐹 “ 𝐴 ) |
2 |
|
fundcmpsurinjimaid.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
fundcmpsurinjimaid.h |
⊢ 𝐻 = ( I ↾ 𝐼 ) |
4 |
|
fimadmfo |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
5 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
6 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
5 6
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7
|
eqcomd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = 𝐹 ) |
9 |
2 8
|
syl5eq |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 = 𝐹 ) |
10 |
|
eqidd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 = 𝐴 ) |
11 |
1
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐼 = ( 𝐹 “ 𝐴 ) ) |
12 |
9 10 11
|
foeq123d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐺 : 𝐴 –onto→ 𝐼 ↔ 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) ) |
13 |
4 12
|
mpbird |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 : 𝐴 –onto→ 𝐼 ) |
14 |
|
f1oi |
⊢ ( I ↾ 𝐼 ) : 𝐼 –1-1-onto→ 𝐼 |
15 |
|
f1of1 |
⊢ ( ( I ↾ 𝐼 ) : 𝐼 –1-1-onto→ 𝐼 → ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 ) |
16 |
|
f1eq1 |
⊢ ( 𝐻 = ( I ↾ 𝐼 ) → ( 𝐻 : 𝐼 –1-1→ 𝐼 ↔ ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 ) ) |
17 |
3 16
|
ax-mp |
⊢ ( 𝐻 : 𝐼 –1-1→ 𝐼 ↔ ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 ) |
18 |
17
|
biimpri |
⊢ ( ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 → 𝐻 : 𝐼 –1-1→ 𝐼 ) |
19 |
|
fimass |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
20 |
1 19
|
eqsstrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐼 ⊆ 𝐵 ) |
21 |
|
f1ss |
⊢ ( ( 𝐻 : 𝐼 –1-1→ 𝐼 ∧ 𝐼 ⊆ 𝐵 ) → 𝐻 : 𝐼 –1-1→ 𝐵 ) |
22 |
18 20 21
|
syl2an |
⊢ ( ( ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐻 : 𝐼 –1-1→ 𝐵 ) |
23 |
22
|
ex |
⊢ ( ( I ↾ 𝐼 ) : 𝐼 –1-1→ 𝐼 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐻 : 𝐼 –1-1→ 𝐵 ) ) |
24 |
14 15 23
|
mp2b |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐻 : 𝐼 –1-1→ 𝐵 ) |
25 |
3
|
fveq1i |
⊢ ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( I ↾ 𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) ) |
26 |
5
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
27 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
28 |
26 27 27
|
fnfvimad |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) |
29 |
28 1
|
eleqtrrdi |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
30 |
|
fvresi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 → ( ( I ↾ 𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( I ↾ 𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
32 |
25 31
|
syl5eq |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
33 |
32
|
mpteq2dva |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
34 |
2
|
coeq2i |
⊢ ( 𝐻 ∘ 𝐺 ) = ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
|
f1of |
⊢ ( ( I ↾ 𝐼 ) : 𝐼 –1-1-onto→ 𝐼 → ( I ↾ 𝐼 ) : 𝐼 ⟶ 𝐼 ) |
36 |
14 35
|
ax-mp |
⊢ ( I ↾ 𝐼 ) : 𝐼 ⟶ 𝐼 |
37 |
3
|
feq1i |
⊢ ( 𝐻 : 𝐼 ⟶ 𝐼 ↔ ( I ↾ 𝐼 ) : 𝐼 ⟶ 𝐼 ) |
38 |
36 37
|
mpbir |
⊢ 𝐻 : 𝐼 ⟶ 𝐼 |
39 |
38
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐻 : 𝐼 ⟶ 𝐼 ) |
40 |
39 29
|
cofmpt |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
41 |
34 40
|
syl5eq |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐻 ∘ 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
42 |
33 41 7
|
3eqtr4rd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝐻 ∘ 𝐺 ) ) |
43 |
13 24 42
|
3jca |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐺 : 𝐴 –onto→ 𝐼 ∧ 𝐻 : 𝐼 –1-1→ 𝐵 ∧ 𝐹 = ( 𝐻 ∘ 𝐺 ) ) ) |