| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fundcmpsurinjimaid.i | ⊢ 𝐼  =  ( 𝐹  “  𝐴 ) | 
						
							| 2 |  | fundcmpsurinjimaid.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 3 |  | fundcmpsurinjimaid.h | ⊢ 𝐻  =  (  I   ↾  𝐼 ) | 
						
							| 4 |  | fimadmfo | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 5 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 6 |  | dffn5 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  𝐹 ) | 
						
							| 9 | 2 8 | eqtrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐺  =  𝐹 ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐴  =  𝐴 ) | 
						
							| 11 | 1 | a1i | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐼  =  ( 𝐹  “  𝐴 ) ) | 
						
							| 12 | 9 10 11 | foeq123d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐺 : 𝐴 –onto→ 𝐼  ↔  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 13 | 4 12 | mpbird | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐺 : 𝐴 –onto→ 𝐼 ) | 
						
							| 14 |  | f1oi | ⊢ (  I   ↾  𝐼 ) : 𝐼 –1-1-onto→ 𝐼 | 
						
							| 15 |  | f1of1 | ⊢ ( (  I   ↾  𝐼 ) : 𝐼 –1-1-onto→ 𝐼  →  (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼 ) | 
						
							| 16 |  | f1eq1 | ⊢ ( 𝐻  =  (  I   ↾  𝐼 )  →  ( 𝐻 : 𝐼 –1-1→ 𝐼  ↔  (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼 ) ) | 
						
							| 17 | 3 16 | ax-mp | ⊢ ( 𝐻 : 𝐼 –1-1→ 𝐼  ↔  (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼 ) | 
						
							| 18 | 17 | biimpri | ⊢ ( (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼  →  𝐻 : 𝐼 –1-1→ 𝐼 ) | 
						
							| 19 |  | fimass | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹  “  𝐴 )  ⊆  𝐵 ) | 
						
							| 20 | 1 19 | eqsstrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐼  ⊆  𝐵 ) | 
						
							| 21 |  | f1ss | ⊢ ( ( 𝐻 : 𝐼 –1-1→ 𝐼  ∧  𝐼  ⊆  𝐵 )  →  𝐻 : 𝐼 –1-1→ 𝐵 ) | 
						
							| 22 | 18 20 21 | syl2an | ⊢ ( ( (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝐻 : 𝐼 –1-1→ 𝐵 ) | 
						
							| 23 | 22 | ex | ⊢ ( (  I   ↾  𝐼 ) : 𝐼 –1-1→ 𝐼  →  ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐻 : 𝐼 –1-1→ 𝐵 ) ) | 
						
							| 24 | 14 15 23 | mp2b | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐻 : 𝐼 –1-1→ 𝐵 ) | 
						
							| 25 | 3 | fveq1i | ⊢ ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( (  I   ↾  𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 26 | 5 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 28 | 26 27 27 | fnfvimad | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) ) | 
						
							| 29 | 28 1 | eleqtrrdi | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐼 ) | 
						
							| 30 |  | fvresi | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐼  →  ( (  I   ↾  𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( (  I   ↾  𝐼 ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 32 | 25 31 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 33 | 32 | mpteq2dva | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 34 | 2 | coeq2i | ⊢ ( 𝐻  ∘  𝐺 )  =  ( 𝐻  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 |  | f1of | ⊢ ( (  I   ↾  𝐼 ) : 𝐼 –1-1-onto→ 𝐼  →  (  I   ↾  𝐼 ) : 𝐼 ⟶ 𝐼 ) | 
						
							| 36 | 14 35 | ax-mp | ⊢ (  I   ↾  𝐼 ) : 𝐼 ⟶ 𝐼 | 
						
							| 37 | 3 | feq1i | ⊢ ( 𝐻 : 𝐼 ⟶ 𝐼  ↔  (  I   ↾  𝐼 ) : 𝐼 ⟶ 𝐼 ) | 
						
							| 38 | 36 37 | mpbir | ⊢ 𝐻 : 𝐼 ⟶ 𝐼 | 
						
							| 39 | 38 | a1i | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐻 : 𝐼 ⟶ 𝐼 ) | 
						
							| 40 | 39 29 | cofmpt | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐻  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 34 40 | eqtrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐻  ∘  𝐺 )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 42 | 33 41 7 | 3eqtr4rd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝐻  ∘  𝐺 ) ) | 
						
							| 43 | 13 24 42 | 3jca | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐺 : 𝐴 –onto→ 𝐼  ∧  𝐻 : 𝐼 –1-1→ 𝐵  ∧  𝐹  =  ( 𝐻  ∘  𝐺 ) ) ) |