Metamath Proof Explorer


Theorem fundcmpsurinjimaid

Description: Every function F : A --> B can be decomposed into a surjective function onto the image ( F " A ) of the domain of F and an injective function from the image ( F " A ) . (Contributed by AV, 17-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinjimaid.i I = F A
fundcmpsurinjimaid.g G = x A F x
fundcmpsurinjimaid.h H = I I
Assertion fundcmpsurinjimaid F : A B G : A onto I H : I 1-1 B F = H G

Proof

Step Hyp Ref Expression
1 fundcmpsurinjimaid.i I = F A
2 fundcmpsurinjimaid.g G = x A F x
3 fundcmpsurinjimaid.h H = I I
4 fimadmfo F : A B F : A onto F A
5 ffn F : A B F Fn A
6 dffn5 F Fn A F = x A F x
7 5 6 sylib F : A B F = x A F x
8 7 eqcomd F : A B x A F x = F
9 2 8 syl5eq F : A B G = F
10 eqidd F : A B A = A
11 1 a1i F : A B I = F A
12 9 10 11 foeq123d F : A B G : A onto I F : A onto F A
13 4 12 mpbird F : A B G : A onto I
14 f1oi I I : I 1-1 onto I
15 f1of1 I I : I 1-1 onto I I I : I 1-1 I
16 f1eq1 H = I I H : I 1-1 I I I : I 1-1 I
17 3 16 ax-mp H : I 1-1 I I I : I 1-1 I
18 17 biimpri I I : I 1-1 I H : I 1-1 I
19 fimass F : A B F A B
20 1 19 eqsstrid F : A B I B
21 f1ss H : I 1-1 I I B H : I 1-1 B
22 18 20 21 syl2an I I : I 1-1 I F : A B H : I 1-1 B
23 22 ex I I : I 1-1 I F : A B H : I 1-1 B
24 14 15 23 mp2b F : A B H : I 1-1 B
25 3 fveq1i H F x = I I F x
26 5 adantr F : A B x A F Fn A
27 simpr F : A B x A x A
28 26 27 27 fnfvimad F : A B x A F x F A
29 28 1 eleqtrrdi F : A B x A F x I
30 fvresi F x I I I F x = F x
31 29 30 syl F : A B x A I I F x = F x
32 25 31 syl5eq F : A B x A H F x = F x
33 32 mpteq2dva F : A B x A H F x = x A F x
34 2 coeq2i H G = H x A F x
35 f1of I I : I 1-1 onto I I I : I I
36 14 35 ax-mp I I : I I
37 3 feq1i H : I I I I : I I
38 36 37 mpbir H : I I
39 38 a1i F : A B H : I I
40 39 29 cofmpt F : A B H x A F x = x A H F x
41 34 40 syl5eq F : A B H G = x A H F x
42 33 41 7 3eqtr4rd F : A B F = H G
43 13 24 42 3jca F : A B G : A onto I H : I 1-1 B F = H G