Metamath Proof Explorer


Theorem fnfvimad

Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnfvimad.1 φFFnA
fnfvimad.2 φBA
fnfvimad.3 φBC
Assertion fnfvimad φFBFC

Proof

Step Hyp Ref Expression
1 fnfvimad.1 φFFnA
2 fnfvimad.2 φBA
3 fnfvimad.3 φBC
4 inss2 ACC
5 imass2 ACCFACFC
6 4 5 ax-mp FACFC
7 inss1 ACA
8 7 a1i φACA
9 2 3 elind φBAC
10 fnfvima FFnAACABACFBFAC
11 1 8 9 10 syl3anc φFBFAC
12 6 11 sselid φFBFC