Metamath Proof Explorer


Theorem resfvresima

Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses resfvresima.f φ Fun F
resfvresima.s φ S dom F
resfvresima.x φ X S
Assertion resfvresima φ H F S F S X = H F X

Proof

Step Hyp Ref Expression
1 resfvresima.f φ Fun F
2 resfvresima.s φ S dom F
3 resfvresima.x φ X S
4 3 fvresd φ F S X = F X
5 4 fveq2d φ H F S F S X = H F S F X
6 1 2 jca φ Fun F S dom F
7 funfvima2 Fun F S dom F X S F X F S
8 6 3 7 sylc φ F X F S
9 8 fvresd φ H F S F X = H F X
10 5 9 eqtrd φ H F S F S X = H F X