Step |
Hyp |
Ref |
Expression |
1 |
|
resfvresima.f |
⊢ ( 𝜑 → Fun 𝐹 ) |
2 |
|
resfvresima.s |
⊢ ( 𝜑 → 𝑆 ⊆ dom 𝐹 ) |
3 |
|
resfvresima.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
4 |
3
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) ) = ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
6 |
1 2
|
jca |
⊢ ( 𝜑 → ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) ) |
7 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
8 |
6 3 7
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑆 ) ) |
9 |
8
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
10 |
5 9
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹 “ 𝑆 ) ) ‘ ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |