Metamath Proof Explorer


Theorem resfvresima

Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses resfvresima.f ( 𝜑 → Fun 𝐹 )
resfvresima.s ( 𝜑𝑆 ⊆ dom 𝐹 )
resfvresima.x ( 𝜑𝑋𝑆 )
Assertion resfvresima ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹𝑆 ) ) ‘ ( ( 𝐹𝑆 ) ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 resfvresima.f ( 𝜑 → Fun 𝐹 )
2 resfvresima.s ( 𝜑𝑆 ⊆ dom 𝐹 )
3 resfvresima.x ( 𝜑𝑋𝑆 )
4 3 fvresd ( 𝜑 → ( ( 𝐹𝑆 ) ‘ 𝑋 ) = ( 𝐹𝑋 ) )
5 4 fveq2d ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹𝑆 ) ) ‘ ( ( 𝐹𝑆 ) ‘ 𝑋 ) ) = ( ( 𝐻 ↾ ( 𝐹𝑆 ) ) ‘ ( 𝐹𝑋 ) ) )
6 1 2 jca ( 𝜑 → ( Fun 𝐹𝑆 ⊆ dom 𝐹 ) )
7 funfvima2 ( ( Fun 𝐹𝑆 ⊆ dom 𝐹 ) → ( 𝑋𝑆 → ( 𝐹𝑋 ) ∈ ( 𝐹𝑆 ) ) )
8 6 3 7 sylc ( 𝜑 → ( 𝐹𝑋 ) ∈ ( 𝐹𝑆 ) )
9 8 fvresd ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹𝑆 ) ) ‘ ( 𝐹𝑋 ) ) = ( 𝐻 ‘ ( 𝐹𝑋 ) ) )
10 5 9 eqtrd ( 𝜑 → ( ( 𝐻 ↾ ( 𝐹𝑆 ) ) ‘ ( ( 𝐹𝑆 ) ‘ 𝑋 ) ) = ( 𝐻 ‘ ( 𝐹𝑋 ) ) )